
postpic Documentation
Release v0.3.1+298.g833fe56.dirty

the postpic developers

Mar 13, 2018

Contents

1 Introduction 1
1.1 What is postpic? . 1

1.1.1 The Dumpreader . 2
1.1.2 The Simulationreader . 2

2 Getting started 7

3 Changelog of postpic 11
3.1 current master . 11
3.2 v0.3.1 . 12
3.3 v0.3 . 12
3.4 v0.2.3 . 13
3.5 v0.2.2 and earlier . 14

4 Contributing to the postpic code base 15
4.1 Why me? . 15
4.2 How to contribute? . 15
4.3 The Workflow . 15
4.4 Coding and general remaks . 16
4.5 What to contribute? . 16

5 Postpic API Documentation 17
5.1 postpic . 17

5.1.1 postpic package . 17
5.1.1.1 Subpackages . 34
5.1.1.2 Submodules . 58
5.1.1.3 postpic.datahandling module . 58
5.1.1.4 postpic.experimental module . 67
5.1.1.5 postpic.helper module . 67

6 Indices and tables 71

Python Module Index 73

i

ii

CHAPTER 1

Introduction

POSTPIC

The open source particle-in-cell post processor.

Particle-in-cell simulations are a valuable tool for the simulation of non-equelibrium systems in plasma- or astro-
physics. Such simulations usually produce a large amount of data consisting of electric and magnetic field data as well
as particle positions and momenta. While there are various PIC codes freely available, the task of post-processing –
essentially condensing the large amounts of data into small units suitable for plotting routines – is typically left to each
user individually. As post-processing may be a time consuming and error-prone process, this python package has been
developed.

Postpic can handle two different types of data:

Field data which is data sampled on a predefined grid, such as electic and magnetic fields, particle- or charge densi-
ties, currents, etc. Fields are usually the data, which can be plotted directly. See postpic.Field.

Particle data which is data of multiple particles and for each particle positions (x, y, z) and momenta (px, py, pz)
are known. Particles usually also have weight, charge, time and a unique id. Postpic can transform particle
data to field data using the same algorithm and particle shapes, which are used in most PIC Simulations. The
particle-to-grid routines are written in C for maximum performance. See postpic.MultiSpecies.

1.1 What is postpic?

Postpic is an open-source package aiming to ease the postprocessing of particle-in-cell simulation data. Particle-in-cell
simulations are often used to simulate the behaviour of plasmas in non-equilibrium states. The Datareader package
contains methods and interfaces to read data from any Simulation.

The basic concept consits of two different types of readers:

1

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

1.1.1 The Dumpreader

This has to be subclassed from Dumpreader_ifc and allows to read a single dump created by the simulation. To identify
which dump should be read its initialized with a dumpidentifier. This dumpidentifier can be almost anything, but in
the easiest case this is the filepath pointing to a single file containing every information about this simulation dump.
With this information the dumpreader must be able to read all data regarding this dump (which is a lot: X, Y, Z, Px,
Py, Py, weight, mass, charge, ID,.. for all particle species, electric and magnetic fields on grid, the grid itself, mabe
particle ids,. . .)

1.1.2 The Simulationreader

This has to be subclassed from Simulationreader_ifc and allows to read a full list of simulation dumps. Thus an
alternate Name for this class could be “Dumpsequence”. This allows the code to track particles from different times
of the simulation or create plots with a time axis.

Stephan Kuschel 2014

postpic.datareader.chooseCode(code)
Chooses appropriate reader for the given simulation code. After choosing a preset of the correct reader, the
functions postpic.readDump() and postpic.readSim() are setup for this preset.

Parameters code (string) –

Possible options are:

• ”DUMMY”: dummy class creating fake data.

• ”EPOCH”: .sdf files written by EPOCH1D, EPOCH2D or EPOCH3D.

• ”openPMD”: .h5 files written in openPMD Standard

• ”piconGPU”: same as “openPMD”

• ”VSIM”: .hdf5 files written by VSim.

postpic.datareader.readDump(dumpidentifier, **kwargs)
After using the fucntion postpic.chooseCode(), this function should be the main function for reading a
dump into postpic.

Parameters

• dumpidentifier (str) – Identifies the dump. For most dumpreaders this is a string
poining to the file or folder. See what the specific reader of your format expects.

• **kwargs – will be forwarded to the dumpreader.

Returns the dumpreader for this specific data dump.

Return type Dumpreader

postpic.datareader.readSim(simidentifier, **kwargs)
After using the function postpic.chooseCode(), this function should be the main function for reading a
simulation into postpic. A simulation is equivalent to a series of dumps in a specific order (not neccessarily time
order).

Parameters

• simidentifier (str) – Identifies the simulation. For EPOCH this should be a string
pointing to a .visit file. Specifics depend on the current simreader class, as set by chooseC-
ode.

• **kwargs – will be forwarded to the simreader.

2 Chapter 1. Introduction

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

Returns the Simulationreader

postpic.datareader.setdumpreadercls(dumpreadercls)
Sets the class that is used for reading dumps on later calls of postpic.readDump().

Parameters dumpreadercls (Dumpreader_ifc) –

Note: This should only be used, for testing. A set of presets is provided by postpic.chooseCode().

postpic.datareader.setsimreadercls(simreadercls)
Sets the class that is used for reading a simulation on later calls of postpic.readSim().

Parameters simreadercls (Simulationreader_ifc) –

Note: This should only be used, for testing. A set of presets is provided by postpic.chooseCode().

class postpic.datareader.Dumpreader_ifc(dumpidentifier, name=None)
Interface class for reading a single dump. A dump contains informations about the simulation at a single timestep
(Usually E- and B-Fields on grid + particles).

Any Dumpreader_ifc implementation will always be initialized using a dumpidentifier. This dumpidentifier can
be anything, that points to the data of a dump. In the easiest case this is just the filename of the dump holding
all data of that timestep (for example .sdf file for EPOCH, .hdf5 for some other code).

The dumpreader should provide all necessary informations in a unified interface but at the same time it should
not restrict the user to these properties of there dump only. The recommended implementation is shown here
(EPOCH and VSim reader work like this): All (!) data, that is saved in a single dump should be accessible via
the self.__getitem__(key) method. Together with the self.keys() method, this will ensure, that every dumpreader
works as a dictionary and every dump attribute is accessible via this dictionary.

• Level 0:

__getitem__ and keys(self) are level 0 methods, meaning it must be possible to access everthing with those
methods.

• Level 1:

provide direct data access by forwarding the requests to the corresponding Level 0 or Level 1 methods.

• Level 2:

provide user access to the data by forwarding the request to Level 1 or Level 2 methods, but NOT to Level 0
methods.

If some attribute wasnt dumped a KeyError must be thrown. This allows classes which are using the reader to
just exit if a needed property wasnt dumped or to catch the KeyError and proceed by actively ignoring it.

It is highly recommended to also override the functions __str__ and gridpoints.

Parameters dumpidentifier – variable type whatever identifies the dump. It is recommended
to use a String here pointing to a file.

data(key)
access to every raw data. needs to return numpy arrays corresponding to the “key”.

getSpecies(species, attrib)
This function gives access to any of the particle properties in ..helper.attribidentify This method can behave
in the following ways: 1) Return a list of scalar properties for each particle of this species 2) Return a single
float (i.e. 1.2, NOT [1.2]) to show that

1.1. What is postpic? 3

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

every particle of this species has the same scalar value to thisdimmax property assigned. This
might be quite often used for charge or mass that are defined per species.

3. Raise a KeyError if the requested property or species wasn dumped.

gridnode(key, axis)
The grid nodes along “axis”. Grid nodes include the beginning and the end of the grid. Example: If the
grid has 20 grid points, it has 21 grid nodes or grid edges.

gridoffset(key, axis)
offset of the beginning of the first cell of the grid.

gridpoints(key, axis)
Number of grid points along “axis”. It is highly recommended to override this method due to performance
reasons.

gridspacing(key, axis)
size of one grid cell in the direction “axis”.

keys()

Returns a list of keys, that can be used in __getitem__ to read any information from this dump.

simdimensions()
the number of spatial dimensions the simulations was using. Must be 1, 2 or 3.

simextent(axis)
returns the extent of the actual simulation box. Override in your own reader class for better performance
implementation.

class postpic.datareader.Simulationreader_ifc(simidentifier, name=None)
Interface for reading the data of a full Simulation.

Any Simulationreader_ifc implementation will always be initialized using a simidentifier. This simidentifier can
be anything, that points to the data of multiple dumps. In the easiest case this can be the .visit file.

The Simulationreader_ifc is subclass of collections.Sequence and will thus behave as a Sequence. The Objects
in the Sequence are supposed to be subclassed from Dumpreader_ifc.

It is highly recommended to also override the __str__ function.

Parameters simidentifier – variable type something identifiying a series of dumps.

postpic.readDump(dumpidentifier, **kwargs)
After using the fucntion postpic.chooseCode(), this function should be the main function for reading a
dump into postpic.

Parameters

• dumpidentifier (str) – Identifies the dump. For most dumpreaders this is a string
poining to the file or folder. See what the specific reader of your format expects.

• **kwargs – will be forwarded to the dumpreader.

Returns the dumpreader for this specific data dump.

Return type Dumpreader

postpic.readSim(simidentifier, **kwargs)
After using the function postpic.chooseCode(), this function should be the main function for reading a
simulation into postpic. A simulation is equivalent to a series of dumps in a specific order (not neccessarily time
order).

Parameters

4 Chapter 1. Introduction

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

• simidentifier (str) – Identifies the simulation. For EPOCH this should be a string
pointing to a .visit file. Specifics depend on the current simreader class, as set by chooseC-
ode.

• **kwargs – will be forwarded to the simreader.

Returns the Simulationreader

1.1. What is postpic? 5

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

6 Chapter 1. Introduction

CHAPTER 2

Getting started

The following script should just show an example how to get started using the postpic postprocessor. This script uses
the dummy reader (thus auto generated random data). Thats why there is no input file needed to read the simulation
data from.

#!/usr/bin/env python
#
This file is part of postpic.
#
postpic is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
postpic is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with postpic. If not, see <http://www.gnu.org/licenses/>.
#
Copyright Stephan Kuschel 2015
#

def main():
import numpy as np
import postpic as pp

postpic will use matplotlib for plotting. Changing matplotlibs backend
to "Agg" makes it possible to save plots without a display attached.
This is necessary to run this example within the "run-tests" script
on travis-ci.
import matplotlib; matplotlib.use('Agg')

7

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

choose the dummy reader. This reader will create fake data for testing.
pp.chooseCode('dummy')

dr = pp.readDump(3e5) # Dummyreader takes a float as argument, not a string.
set and create directory for pictures.
savedir = '_examplepictures/'
import os
if not os.path.exists(savedir):

os.mkdir(savedir)

initialze the plotter object.
project name will be prepended to all output names
plotter = pp.plotting.plottercls(dr, outdir=savedir, autosave=True, project=

→˓'simpleexample')

we will need a refrence to the MultiSpecies quite often
from postpic.particles import MultiSpecies

create MultiSpecies Object for every particle species that exists.
pas = [MultiSpecies(dr, s) for s in dr.listSpecies()]

if True:
Plot Data from the FieldAnalyzer fa. This is very simple: every line

→˓creates one plot
plotter.plotField(dr.Ex()) # plot 0
plotter.plotField(dr.Ey()) # plot 1
plotter.plotField(dr.Ez()) # plot 2
plotter.plotField(dr.energydensityEM()) # plot 3

Using the MultiSpecies requires an additional step:
1) The MultiSpecies.createField method will be used to create a Field object
with choosen particle scalars on every axis
2) Plot the Field object
optargsh={'bins': [300,300]}
for pa in pas:

create a Field object nd holding the number density
nd = pa.createField('x', 'y', optargsh=optargsh, simextent=True)
plot the Field object nd
plotter.plotField(nd, name='NumberDensity') # plot 4
if you like to keep working with the just created number density
yourself, it will convert to an numpy array whenever needed:
arr = np.asarray(nd)
print('Shape of number density: {}'.format(arr.shape))

more advanced: create a field holding the total kinetic energy on grid
ekin = pa.createField('x', 'y', weights='Ekin_MeV', optargsh=optargsh,

→˓simextent=True)
The Field objectes can be used for calculations. Here we use this to
calculate the average kinetic energy on grid and plot
plotter.plotField(ekin / nd, name='Avg Kin Energy (MeV)') # plot 5
use optargsh to force lower resolution
plot number density
plotter.plotField(pa.createField('x', 'y', optargsh=optargsh),

→˓lineoutx=True, lineouty=True) # plot 6
plot phase space
plotter.plotField(pa.createField('x', 'p', optargsh=optargsh)) # plot 7
plotter.plotField(pa.createField('x', 'gamma', optargsh=optargsh)) #

→˓plot 8

8 Chapter 2. Getting started

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

plotter.plotField(pa.createField('x', 'beta', optargsh=optargsh)) # plot
→˓9

same with high resolution
plotter.plotField(pa.createField('x', 'y', optargsh={'bins': [1000,1000]}

→˓)) # plot 10
plotter.plotField(pa.createField('x', 'p', optargsh={'bins': [1000,1000]}

→˓)) # plot 11

advanced: postpic has already defined a lot of particle scalars as Px,
→˓Py, Pz, P, X, Y, Z, gamma, beta, Ekin, Ekin_MeV, Ekin_MeV_amu, ... but if needed
→˓you can also define your own particle scalar on the fly.

In case its regularly used it should be added to postpic. If you dont
→˓know how, just let us know about your own useful particle scalar by email or adding
→˓an issue at

https://github.com/skuschel/postpic/issues

define your own particle scalar: p_r = sqrt(px**2 + py**2)/p
plotter.plotField(pa.createField('sqrt(px**2 + py**2)/p', 'sqrt(x**2 +

→˓y**2)', optargsh={'bins':[400,400]})) # plot 12

however, since its unknown to the program, what quantities were
→˓calculated the axis of plot 12 will only say "unknown"

this can be avoided in two ways:
1st: define your own ScalarProperty(name, expr, unit):
p_perp = pp.particles.ScalarProperty('sqrt(px**2 + py**2)/p', name='p_perp

→˓', unit='kg*m/s')
r_xy = pp.particles.ScalarProperty('sqrt(x**2 + y**2)', name='r_xy', unit=

→˓'m')
this will create an identical plot, but correcly labled
plotter.plotField(pa.createField(p_perp, r_xy, optargsh={'bins':[400,400]}

→˓)) # plot 13
if those quantities are reused often, teach postip to recognize them

→˓within the string expression:
pp.particles.particle_scalars.add(p_perp)
#pp.particles.scalars.add(r_xy) # we cannot execute this line, because r_

→˓xy is already predefinded
plotter.plotField(pa.createField('p_perp', 'r_xy', optargsh={'bins':[400,

→˓400]})) # plot 14

choose particles by their properies
this has been the old interface, which would still work
def cf(ms):
return ms('x') > 0.0 # only use particles with x > 0.0
cf.name = 'x>0.0'
pa.compress(cf)
nicer is the new filter function, which does exactly the same:
pf = pa.filter('x>0')
plot 15, compare with plot 10
plotter.plotField(pf.createField('x', 'y', optargsh={'bins': [1000,1000]}

→˓))
plot 16, compare with plot 12
plotter.plotField(pf.createField('p_perp', 'r_xy', optargsh={'bins':[400,

→˓400]}))

plotter.plotField(dr.divE()) # plot 13

9

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

if __name__=='__main__':
main()

10 Chapter 2. Getting started

CHAPTER 3

Changelog of postpic

3.1 current master

Incompatible adjustments to previous version

• postpic.Field method exporttocsv is removed. Use export instead.

• postpic.Field method transform is renamed to map_coordinates, matching the underlying scipy-
function.

• postpic.Field method mean has now an interface matching ndarray.mean. This means that, if the
axis argument is not given, it averages across all axes instead the last axis.

• postpic.Field.map_coordinates applies now the Jacobian determinant of the transformation, in order
to preserve the definite integral. In your code you will need to turn calls to Field.transform into calls to
Field.map_coordinates and set the keyword argument preserve_integral=False to get the old
behaviour.

• The functions MultiSpecies.compress, MultiSpecies.filter, MultiSpecies.uncompress
and ParticleHistory.skip return a new object now. Before this release, they modified the current object.
Assuming ms is a MultiSpecies object, the corresponding adjustemens read: old: ms.filter('gamma
> 2') new: ms = ms.filter('gamma > 2')

Other improvements and new features

• postpic.Field has methods .loadfrom, .saveto and .export. .saveto saves the complete Field
object as a .npz file. Use .loadfrom to load a Field object from file. .export is able to write .csv files
and .vtk files in addition.

• postpic has a new function time_profile_at_plane that ’measures’ the temporal profile of a pulse
while passing through a plane

• postpic has a new function unstagger_fields that will take a set of staggered fields and returns the
fields after removing the stagger

• postpic has a new function export_vector_vtk that takes up to three fields and exports them as a vector
field in the .vtk format

11

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

• postpic has a new function export_scalars_vtk that takes up to four fields and exports them as multi-
ple scalar fields on the same grid in the .vtk format

• postpic.Field works now with all numpy ufuncs, also with ufunc.reduce, ufunc.outer, ufunc.
accumulate and ufunc.at

• postpic.Field now supports broadcasting like numpy arrays, for binary operators as well as binary ufunc
operations

• postpic.Field has methods .swapaxes, .transpose and property .T compatible to numpy.ndarray

• postpic.Field has methods all, any, max, min, prod, sum, ptp, std, var, mean, clip compatible
to numpy.ndarray

• postpic.Field has a new method map_axis_grid for transforming the coordinates only along one axis
which is simpler than map_coordinates, but also takes care of the Jacobian

• postpic.Field has a new method autocutout used to slice away close-to-zero regions from the borders

• postpic.Field has a new method fft_autopad used to pad a small number of grid points to each axis
such that the dimensions of the Field are favourable to FFTW

• postpic.Field has a new method adjust_stagger_to to adjust the grid origin to match the grid origin
of another field

• postpic.Field.topolar has new defaults for extent and shape

• postpic.Field.integrate now uses the simpson method by default

• New module postpic.experimental to contain experimental algorithms for your reference. These algo-
rithms are not meant to be useable as-is, but may serve as recipes to write your own algorithms.

• k-space reconstruction from EPOCH dumps has greatly improved accuracy due to a new algorithm correctly
incorporating the frequency response of the implicit linear interpolation performed by EPOCH’s half-steps

3.2 v0.3.1

2017-10-03

Only internal changes. Versioning is handled by versioneer.

3.3 v0.3

2017-09-28

Many improvements in terms of speed and features. Unfortunately some changes are not backwards-compatible to
v0.2.3, so you may have to adapt your code to the new interface. For details, see the corresponding section below.

Highlights

• kspace reconstruction and propagation of EM waves.

• postpic.Field properly handles operator overloading and slicing. Slicing can be index based (integers) or
referring the actual physical extent on the axis of a Field object (using floats).

• Expression based interface to particle properties (see below)

Incompatible adjustments to previous version

• New dependency: Postpic requires the numexpr package to be installed now.

12 Chapter 3. Changelog of postpic

https://github.com/warner/python-versioneer

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

• Expression based interface of for particles: If ms is a postpic.MultiSpecies object, then the call ms.
X() has been deprecated. Use ms('x') instead. This new particle interface can handle expressions that the
numexpr package understands. Also ms('sqrt(x**2 + gamma - id)') is valid. This interface is
easier to use, has better functionality and is faster due to numexpr. The list of known per particle scalars
and their definitions is available at postpic.particle_scalars. In addition all constants of scipy.
constants.* can be used. In case you find particle scalar that you use regularly which is not in the list,
please open an issue and let us know!

• The postpic.Field class now behaves more like an numpy.ndarray which means that almost all func-
tions return a new field object instead of modifying the current. This change affects the following functions:
half_resolution, autoreduce, cutout, mean.

Other improvements and new features

• postpic.helper.kspace can reconstruct the correct k-space from three EM fields provided to distinguish
between forward and backward propagating waves (thanks to @Ablinne)

• postpic.helper.kspace_propagate will turn the phases in k-space to propagate the EM-wave.

• List of new functions in postpic from postpic.helper (thanks to @Ablinne): kspace_epoch_like,
kspace, kspace_propagate.

• Field.fft function for fft optimized with pyfftw (thanks to @Ablinne).

• Field.__getitem__ to slice a Field object. If integers are provided, it will interpret them as gridpoints. If
float are provided they are interpreted as the physical region of the data and slice along the corresponding axis
positions (thanks to @Ablinne).

• Field class has been massively impoved (thanks to @Ablinne): The operator overloading is now properly
implemented and thanks to __array__ method, it can be interpreted by numpy as an ndarray whenever nec-
essary.

• List of new functions of the Field class (thanks to @Ablinne): meshgrid, conj, replace_data, pad,
transform, squeeze, integrate, fft, shift_grid_by, __getitem__, __setitem__.

• List of new properties of the Field class (thanks to @Ablinne): matrix, real, imag, angle.

• Many performance optimizations using pyfftw library (optional) or numexpr (now required by postpic) or by
avoiding in memory data copying.

• Lots of fixes

3.4 v0.2.3

2017-02-17

This release brings some bugfixes and various new features.

Bugfixes

• Particle property Bz.

• plotting of contourlevels.

Improvements and new features

• openPMD support (thanks to @ax3l).

• ParticleHistory class to collect particle information over the entire simulation.

• added particle properties v{x,y,z} and beta{x,y,z}.

• Lots of performance improvemts: particle data will be much less copied in memory now.

3.4. v0.2.3 13

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

3.5 v0.2.2 and earlier

There hasnt been any changelog. Dont use those versions anymore.

14 Chapter 3. Changelog of postpic

CHAPTER 4

Contributing to the postpic code base

Any help contributing to the postpic project ist greatly appreciated! Feel free to contact any of the developers or ask
for help using the Issues Page.

4.1 Why me?

because you are using it!

4.2 How to contribute?

Reporting bugs or asking questions works with a GitHub account simply on the Issues page.

For any coding you need to be familiar with git. Its a distributed version control system created by Linus Torvalds
(and more importantly: he is also using it for maintaining the linux kernel). There is a nice introduction to git at
try.github.io/, but in general you can follow the bootcamp section at https://help.github.com/ for your first steps.

One of the most comprehensive guides is probably this book. Just start reading from the beginning. It is worth it!

4.3 The Workflow

Adding a feature is often triggered by the personal demand for it. Thats why production ready features should propagte
to master as fast as possible. Everything on master is considered to be production ready. We follow the github-flow
describing this very nicely.

In short:

1. Fork the PostPic repo to your own GitHub account.

2. Clone from your fork to your local computer.

15

https://github.com/skuschel/postpic/issues
https://github.com/skuschel/postpic/issues
http://git-scm.com/
http://try.github.io/
https://help.github.com/
http://git-scm.com/doc
http://scottchacon.com/2011/08/31/github-flow.html
https://help.github.com/articles/fork-a-repo

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

3. Create a branch whose name tells what you do. Something like codexy-reader or fixwhatever,... is a
good choice. Do NOT call it issue42. Git history should be clearly readable without external information. If
its somehow unspecific in the worst case call it dev or even commit onto your master branch.

4. Implement a new feature/bugfix/documentation/whatever commit to your local repository. It is highly recom-
mended that the new features will have test cases.

5. KEEP YOUR FORK UP TO DATE! Your fork is yours, only. So you have to update it to whatever happens in
the main repository. To do so add the main repository as a second remote with

git remote add upstream git@github.com:skuschel/postpic.git

and pull from it regularly with

git pull --rebase upstream master

1. Make sure all tests are running smoothly (the run-tests.py script also involves pep8 style verification!)
Run run-tests.py before EVERY commit!

2. push to your fork and create a pull request EARLY! Even if your feature or fix is not yet finished, create the
pull request and start it with WIP: or [WIP] (work-in-progress) to show its not yet ready to merge in. But the
pull request will * trigger travis.ci to run the tests whenever you push * show other people what you work on *
ensure early feedback on your work

4.4 Coding and general remaks

• Make sure, that the run-tests.py script exits without error on EVERY commit. To do so, it is HIGHLY
RECOMMENDED to add the pre-commit script as the git pre-commit hook. For instructions see pre-
commit.

• The Coding style is according to slightly simplified pep8 rules. This is included in the run-tests.py script.
If that script runs without error, you should be good to go commit.

• Add the GPLv3+ licence notice on top of every new file. If you add a new file you are free to add your name
as a author. This will let other people know that you are in charge if there is any trouble with the code. This is
only useful if the file you provide adds functionality like a new datareader. Thats why the __init__.py files
typically do not have a name written. In doubt, the git revision history will always show who added which line.

4.5 What to contribute?

Here is a list for your inspiration:

• Add Documentation and usage examples.

• Report bugs at the Issues page.

• Fix bugs from the Issues page.

• Add python docstrings to the codebase.

• Add new features.

• Add new datareader for additional file formats.

• Add test cases

• ...

16 Chapter 4. Contributing to the postpic code base

https://help.github.com/articles/using-pull-requests/
https://github.com/skuschel/postpic/issues
https://github.com/skuschel/postpic/issues

CHAPTER 5

Postpic API Documentation

5.1 postpic

5.1.1 postpic package

POSTPIC

The open source particle-in-cell post processor.

Particle-in-cell simulations are a valuable tool for the simulation of non-equelibrium systems in plasma- or astro-
physics. Such simulations usually produce a large amount of data consisting of electric and magnetic field data as well
as particle positions and momenta. While there are various PIC codes freely available, the task of post-processing –
essentially condensing the large amounts of data into small units suitable for plotting routines – is typically left to each
user individually. As post-processing may be a time consuming and error-prone process, this python package has been
developed.

Postpic can handle two different types of data:

Field data which is data sampled on a predefined grid, such as electic and magnetic fields, particle- or charge densi-
ties, currents, etc. Fields are usually the data, which can be plotted directly. See postpic.Field.

Particle data which is data of multiple particles and for each particle positions (x, y, z) and momenta (px, py, pz)
are known. Particles usually also have weight, charge, time and a unique id. Postpic can transform particle
data to field data using the same algorithm and particle shapes, which are used in most PIC Simulations. The
particle-to-grid routines are written in C for maximum performance. See postpic.MultiSpecies.

class postpic.Field(matrix, name=”, unit=”, **kwargs)
Bases: postpic._compat.mixins.NDArrayOperatorsMixin

The Field Object carries data in form of an numpy.ndarray together with as many Axis objects as the data’s
dimensions. Additionaly the Field object provides any information that is necessary to plot _and_ annotate the
plot.

Create a Field object from scratch. The only required argument is matrix which contains the actual data.

17

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

A name and a unit may be supplied.

The axis may be specified in different ways:

• by passing a list of Axis object as axes

• by passing arrays with the grid_nodes as xedges, yedges and zedges. This is intended to work with
np.histogram.

• by not passing anything, which will create default axes from 0 to 1.

T
Return the Field with the order of axes reversed. In 2D this is the usual matrix transpose operation.

adjust_stagger_to(other)

all(axis=None, out=None, keepdims=False)
Returns True if all elements evaluate to True.

Refer to numpy.all for full documentation.

See also:

numpy.all() equivalent function

angle

any(axis=None, out=None, keepdims=False)
Returns True if any of the elements of a evaluate to True.

Refer to numpy.any for full documentation.

See also:

numpy.any() equivalent function

atleast_nd(n)
Make sure the field has at least ‘n’ dimensions

autocutout(axes=None, fractions=(0.001, 0.002))
Automatically cuts out the main feature of the field by removing border regions that only contain small
numbers.

This is done axis by axis. For each axis, the mean across all other axes is taken. The maximum max of
the remaining 1d-array is taken and searched for the outermost boundaries a, d such that all values out
of array[a:d] are smaller then fractions[0]*max. A second set of boundaries b, c is searched such that
all values out of array[b:c] are smaller then fractions[1]*max. Because fractions[1] should be larger than
fractions[0], array[b:c] should be contained completely in array[a:d].

A padding length x is chosen such that array[b-x:c+x] is entirely within array[a:d].

Then the corresponding axis of the field is sliced to [b-x:c+x] and multiplied with a tukey-window such
that the region [b:c] is left untouched and the field in the padding region smoothly vanishes on the outer
border.

This process is repeated for all axes in axes or for all axes if axes is None.

autoreduce(maxlen=4000)
Reduces the Grid to a maximum length of maxlen per dimension by just executing half_resolution as often
as necessary.

clip(a_min, a_max, out=None)

conj()

18 Chapter 5. Postpic API Documentation

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

cutout(newextent)
only keeps that part of the data, that belongs to newextent.

dimensions
returns only present dimensions. [] and [[]] are interpreted as -1 np.array(2) is interpreted as 0
np.array([1,2,3]) is interpreted as 1 and so on. . .

ensure_frequency_domain()

ensure_spatial_domain()

ensure_transform_state(transform_states)
Makes sure that the field has the given transform_states. transform_states may be a single boolean, indi-
cating the same desired transform_state for all axes. It may be a list of the desired transform states for all
the axes or a dictionary indicating the desired transform states of specific axes.

export(filename, **kwargs)

Uses postpic.export_field to export this field to a file. All ‘‘**kwargs‘ will be forwarded to this
function. Format is recognized by the extension of the filename.

export Field object as a file. Format depends on the extention of the filename. Currently supported are:
.npz:

uses numpy.savez.

.csv: uses numpy.savetxt.

.vtk: vtk export to paraview

extent
returns the extents in a linearized form, as required by “matplotlib.pyplot.imshow”.

fft(axes=None, exponential_signs=’spatial’, **kwargs)
Performs Fourier transform on any number of axes.

The argument axis is either an integer indicating the axis to be transformed or a tuple giving the axes that
should be transformed. Automatically determines forward/inverse transform. Transform is only applied if
all mentioned axes are in the same transform state. If an axis is transformed twice, the origin of the axis is
restored.

Parameters

• exponential_signs – configures the sign convention of the exponential.

– exponential_signs == ‘spatial’: fft using exp(-ikx), ifft using exp(ikx)

– exponential_signs == ‘temporal’: fft using exp(iwt), ifft using exp(-iwt)

• **kwargs – keyword-arguments are passed to the underlying fft implementation.

fft_autopad(axes=None, fft_padsize=<postpic.helper.FFTW_Pad object>)
Automatically pad the array to a size such that computing its FFT using FFTW will be fast.

Parameters fft_padsize (callable) – The default for keyword argument fft_padsize is a
callable, that is used to calculate the padded size for a given size.

By default, this uses fft_padsize=helper.fftw_padsize which finds the next larger “good” grid
size according to what the FFTW documentation says.

However, the FFTW documentation also says: “(. . .) Transforms whose sizes are powers of
2 are especially fast.”

5.1. postpic 19

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

If you don’t worry about the extra padding, you can pass
fft_padsize=helper.fft_padsize_power2 and this method will pad to the next power of
2.

grid

grid_nodes

half_resolution(axis)
Halfs the resolution along the given axis by removing every second grid_node and averaging every second
data point into one.

If there is an odd number of grid points, the last point will be ignored (that means, the extent will change
by the size of the last grid cell).

Returns the modified Field.

Return type Field

imag

integrate(axes=None, method=<function simps>)
Calculates the definite integral along the given axes.

Parameters method (callable) – Choose the method to use. Available options:

• ’constant’

• any function with the same signature as scipy.integrate.simps (default).

islinear()

label

classmethod loadfrom(filename)
construct a new field object from file. currently, the following file formats are supported: *.npz

map_axis_grid(axis, transform, preserve_integral=True, jacobian_func=None)
Transform the Field to new coordinates along one axis.

This function transforms the coordinates of one axis according to the function transform and applies the
jacobian to the data.

Please note that no interpolation is applied to the data, instead a non-linear axis grid is produced. If you
want to interpolate the data to a new (linear) grid, use the method map_coordinates() instead.

In contrast to map_coordinates(), the function transform is not used to pull the new data points from
the old grid, but is directly applied to the axis. This reverses the direction of the transform. Therfore, in
order to preserve the integral, it is necessary to divide by the Jacobian.

Parameters

• axis (int) – the index or name of the axis you want to apply transform to.

• transform (callable) – the transformation function which takes the old coordinates
as an input and returns the new grid

• preserve_integral (bool) – Divide by the jacobian of transform, in order to pre-
serve the integral.

• jacobian_func (callable) – If given, this is expected to return the derivative of
transform. If not given, the derivative is numerically approximated.

map_coordinates(newaxes, transform=None, complex_mode=’polar’, preserve_integral=True, ja-
cobian_func=None, jacobian_determinant_func=None, **kwargs)

Transform the Field to new coordinates.

20 Chapter 5. Postpic API Documentation

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

Parameters

• newaxes (list) – The new axes of the new coordinates.

• transform (callable) – a callable that takes the new coordinates as input and returns
the old coordinates from where to sample the Field. It is basically the inverse of the
transformation that you want to perform. If transform is not given, the identity will be
used. This is suitable for simple interpolation to a new extent/shape. Example for cartesian
-> polar:

>>> def T(r, theta):
>>> x = r * np.cos(theta)
>>> y = r * np.sin(theta)
>>> return x, y

Note that this function actually computes the cartesian coordinates from the polar coor-
dinates, but stands for transforming a field in cartesian coordinates into a field in polar
coordinates.

However, in order to preserve the definite integral of the field, it is necessary to multiply
with the Jacobian determinant of T.

�̃�(𝑟, 𝜃) = 𝑈(𝑇 (𝑟, 𝜃)) · det 𝜕(𝑥, 𝑦)
𝜕(𝑟, 𝜃)

such that ∫︁
𝑉

d𝑥d𝑦 𝑈(𝑥, 𝑦) =

∫︁
𝑇−1(𝑉)

d𝑟 d𝜃 �̃�(𝑟, 𝜃) .

• complex_mode – The complex_mode specifies how to proceed with complex data.

– complex_mode = ‘cartesian’ - interpolate real/imag part (fastest)

– complex_mode = ‘polar’ - interpolate abs/phase If skimage.restoration is available, the
phase will be unwrapped first (default)

– complex_mode = ‘polar-no-unwrap’ - interpolate abs/phase Skip unwrapping the phase,
even if skimage.restoration is available

• preserve_integral (bool) – If True (the default), the data will be multiplied with
the Jacobian determinant of the coordinate transformation such that the integral over the
data will be preserved.

In general, you will want to do this, because the physical unit of the new Field will cor-
respond to the new axis of the Fields. Please note that Postpic, currently, does not auto-
matically change the unit members of the Axis and Field objects, this you will have to do
manually.

There are, however, exceptions to this rule. Most prominently, if you are converting to
polar coordinates, it depends on what you are going to do with the transformed Field. If
you intend to do a Cartesian r-theta plot or are interested in a lineout for a single value of
theta, you do want to apply the Jacobian determinant. If you had a density in e.g. J/m^2
than, in polar coordinates, you want to have a density in J/m/rad. If you intend, on the
other hand, to do a polar plot, you do not want to apply the Jacobian. In a polar plot,
the data points are plotted with variable density which visually takes care of the Jacobian
automatically. A polar plot of the polar data should look like a Cartesian plot of the original
data with just a peculiar coordinate grid drawn over it.

• jacobian_determinant_func (callable) – A callable that returns the jacobian
determinant of the transform. If given, this takes precedence over the following option.

5.1. postpic 21

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

• jacobian_func (callable) – a callable that returns the jacobian of the transform.
If this is not given, the jacobian is numerically approximated.

• **kwargs – Additional keyword arguments are passed to
scipy.ndimage.map_coordinates, see the documentation of that function.

matrix

max(axis=None, out=None)
Return the maximum along a given axis.

Refer to numpy.amax for full documentation.

See also:

numpy.amax() equivalent function

mean(axis=None, dtype=None, out=None, keepdims=False)
Returns the average of the array elements along given axis.

Refer to numpy.mean for full documentation.

See also:

numpy.mean() equivalent function

meshgrid(sparse=True)

min(axis=None, out=None, keepdims=False)
Return the minimum along a given axis.

Refer to numpy.amin for full documentation.

See also:

numpy.amin() equivalent function

pad(pad_width, mode=’constant’, **kwargs)
Pads the data using np.pad and takes care of the axes. See documentation of numpy.pad.

In contrast to np.pad, pad_width may be given as integers, which will be interpreted as pixels, or as floats,
which will be interpreted as distance along the appropriate axis.

All other parameters are passed to np.pad unchanged.

prod(axis=None, dtype=None, out=None, keepdims=False)
Return the product of the array elements over the given axis

Refer to numpy.prod for full documentation.

See also:

numpy.prod() equivalent function

ptp(axis=None, out=None)
Peak to peak (maximum - minimum) value along a given axis.

Refer to numpy.ptp for full documentation.

See also:

numpy.ptp() equivalent function

22 Chapter 5. Postpic API Documentation

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

real

replace_data(other)

saveto(filename)
Save a Field object as a file. Use loadfrom() to load Field objects.

setaxisobj(axis, axisobj)
replaces the current axisobject for axis axis by the new axisobj axisobj.

shape

shift_grid_by(dx, interpolation=’fourier’)
Translate the Grid by dx. This is useful to remove the grid stagger of field components.

If all axis will be shifted, dx may be a list. Otherwise dx should be a mapping from axis to translation
distance.

The keyword-argument interpolation indicates the method to be used and may be one of [‘linear’,
‘fourier’]. In case of interpolation = ‘fourier’ all axes must have same transform_state.

spacing
returns the grid spacings for all axis.

squeeze()
removes axes that have length 1, reducing self.dimensions.

Note, that axis with length 0 will not be removed! numpy.squeeze also does not remove length=0 directions.

Same as numpy.squeeze.

std(axis=None, dtype=None, out=None, ddof=0, keepdims=False)
Returns the standard deviation of the array elements along given axis.

Refer to numpy.std for full documentation.

See also:

numpy.std() equivalent function

sum(axis=None, dtype=None, out=None, keepdims=False)
Return the sum of the array elements over the given axis.

Refer to numpy.sum for full documentation.

See also:

numpy.sum() equivalent function

swapaxes(axis1, axis2)
Swaps the axes axis1 and axis2, equivalent to numpy.swapaxes.

topolar(extent=None, shape=None, angleoffset=0, **kwargs)
Transform the Field to polar coordinates.

This is a convenience wrapper for map_coordinates() which will let you easily define the desired
grid in polar coordinates.

Parameters

• extent – should be of the form extent=(phimin, phimax, rmin, rmax) or extent=(phimin,
phimax)

• shape – should be of the form shape=(N_phi, N_r),

5.1. postpic 23

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

• angleoffset – can be any real number and will rotate the zero-point of the angular
axis.

• complex_mode – The complex_mode specifies how to proceed with complex data.

– complex_mode = ‘cartesian’ - interpolate real/imag part (fastest)

– complex_mode = ‘polar’ - interpolate abs/phase If skimage.restoration is available, the
phase will be unwrapped first (default)

– complex_mode = ‘polar-no-unwrap’ - interpolate abs/phase Skip unwrapping the phase,
even if skimage.restoration is available

• preserve_integral (bool) – If True (the default), the data will be multiplied with
the Jacobian determinant of the coordinate transformation such that the integral over the
data will be preserved.

In general, you will want to do this, because the physical unit of the new Field will cor-
respond to the new axis of the Fields. Please note that Postpic, currently, does not auto-
matically change the unit members of the Axis and Field objects, this you will have to do
manually.

There are, however, exceptions to this rule. Most prominently, if you are converting to
polar coordinates, it depends on what you are going to do with the transformed Field. If
you intend to do a Cartesian r-theta plot or are interested in a lineout for a single value of
theta, you do want to apply the Jacobian determinant. If you had a density in e.g. J/m^2
than, in polar coordinates, you want to have a density in J/m/rad. If you intend, on the
other hand, to do a polar plot, you do not want to apply the Jacobian. In a polar plot,
the data points are plotted with variable density which visually takes care of the Jacobian
automatically. A polar plot of the polar data should look like a Cartesian plot of the original
data with just a peculiar coordinate grid drawn over it.

• jacobian_determinant_func (callable) – A callable that returns the jacobian
determinant of the transform. If given, this takes precedence over the following option.

• jacobian_func (callable) – a callable that returns the jacobian of the transform.
If this is not given, the jacobian is numerically approximated.

• **kwargs – Additional keyword arguments are passed to
scipy.ndimage.map_coordinates, see the documentation of that function.

transpose(*axes)
transpose method equivalent to numpy.ndarray.transpose. If axes is empty, the order of the axes will be
reversed. Otherwise axes[i] == j means that the i’th axis of the returned Field will be the j’th axis of the
input Field.

var(axis=None, dtype=None, out=None, ddof=0, keepdims=False)
Returns the variance of the array elements, along given axis.

Refer to numpy.var for full documentation.

See also:

numpy.var() equivalent function

class postpic.Axis(name=”, unit=”, **kwargs)
Bases: object

Axis handling for a single Axis.

Create an Axis object from scratch.

24 Chapter 5. Postpic API Documentation

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

The least required arguments are any of:

• grid

• grid_node

• extent _and_ n

The remaining fields will be deduced from the givens.

More arguments may be supplied, as long as they are compatible.

extent

grid

grid_node

half_resolution()
removes every second grid_node.

islinear(force=False)
Checks if the axis has a linear grid.

label

physical_length

spacing

value_to_index(value)

class postpic.PhysicalConstants
Bases: object

gives you some constants.

c = 299792458.0

epsilon0 = 8.854187817620389e-12

mass_u = 1.67266490646e-27

me = 9.109383e-31

mu0 = 1.2566370614359173e-06

static ncrit(laslambda)
Critical plasma density in particles per m^3 for a given wavelength laslambda in m.

static ncrit_um(lambda_um)
Critical plasma density in particles per m^3 for a given wavelength lambda_um in microns.

qe = 1.602176565e-19

postpic.unstagger_fields(*fields, **kwargs)
Unstagger a collection of fields.

This functions shifts the origins of the grids of the given fields such that they coincide. Since the choice of
the common origin is somewhat arbitrary, it might be overriden by a keyword-argument origin, as may be the
interpolation method. See Field.shift_grid_by for available methods.

postpic.kspace_epoch_like(component, fields, dt, extent=None, omega_func=<function
omega_free>, align_to=’B’)

Reconstruct the physical kspace of one polarization component See documentation of kspace

5.1. postpic 25

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

This function will use special care to make sure, that the implicit linear interpolation introduced by Epochs
half-steps will not impede the accuracy of the reconstructed k-space. The frequency response of the linear
interpolation is modelled and removed from the interpolated fields.

dt: time-step of the simulation, this is used to calculate the frequency response due to the linear interpolated
half-steps

For the current version of EPOCH, v4.9, use the following: align_to == ‘B’ for intermediate dumps, align_to
== “E” for final dumps

postpic.kspace(component, fields, extent=None, interpolation=None, omega_func=<function
omega_free>)

Reconstruct the physical kspace of one polarization component This function basically computes one component
of

E = 0.5*(E - omega/k^2 * Cross[k, E])

or B = 0.5*(B + 1/omega * Cross[k, B]).

component must be one of [“Ex”, “Ey”, “Ez”, “Bx”, “By”, “Bz”].

The necessary fields must be given in the dict fields with keys chosen from [“Ex”, “Ey”, “Ez”, “Bx”, “By”,
“Bz”]. Which are needed depends on the chosen component and the dimensionality of the fields. In 3D the
following fields are necessary:

Ex, By, Bz -> Ex Ey, Bx, Bz -> Ey Ez, Bx, By -> Ez

Bx, Ey, Ez -> Bx By, Ex, Ez -> By Bz, Ex, Ey -> Bz

In 2D, components which have “k_z” in front of them (see cross-product in equations above) are not needed.
In 1D, components which have “k_y” or “k_z” in front of them (see cross-product in equations above) are not
needed.

The keyword-argument extent may be a list of values [xmin, xmax, ymin, ymax, . . .] which denote a region of
the Fields on which to execute the kspace reconstruction.

The keyword-argument interpolation indicates whether interpolation should be used to remove the grid stagger.
If interpolation is None, this function works only for non-staggered grids. Other choices for interpolation are
“linear” and “fourier”.

The keyword-argument omega_func may be used to pass a function that will calculate the dispersion relation of
the simulation may be given. The function will receive one argument that contains the k mesh.

postpic.kspace_propagate(kspace, dt, nsteps=1, **kwargs)
Evolve time on a field. This function checks the transform_state of the field and transforms first from spatial
domain to frequency domain if necessary. In this case the inverse transform will also be applied to the result
before returning it. This works, however, only correctly with fields that are the inverse transforms of a k-space
reconstruction, i.e. with complex fields.

dt: time in seconds

This function will return an infinite generator that will do arbitrary many time steps.

If yield_zeroth_step is True, then the kspace will also be yielded after removing the antipropagating waves, but
before the first actual step is done.

If a vector moving_window_vect is passed to this function, which is ideally identical to the mean propagation
direction of the field in forward time direction, an additional linear phase is applied in order to keep the pulse
inside of the box. This effectively enables propagation in a moving window. If dt is negative, the window will
actually move the opposite direction of moving_window_vect. Additionally, all modes which propagate in the
opposite direction of the moving window, i.e. all modes for which dot(moving_window_vect, k)<0, will be
deleted.

26 Chapter 5. Postpic API Documentation

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

The motion of the window can be inhibited by specifying move_window=False. If move_window is None, the
moving window is automatically enabled if moving_window_vect is given.

The deletion of the antipropagating modes can be inhibited by specifying remove_antipropagating_waves=False.
If remove_antipropagating_waves is None, the deletion of the antipropagating modes is automatically enabled
if moving_window_vect is given.

nsteps: number of steps to take

If nsteps == 1, this function will just return the result. If nsteps > 1, this function will return a generator that will
generate the results. If you want a list, just put list(. . .) around the return value.

postpic.time_profile_at_plane(kspace_or_complex_field, axis=’x’, value=None, dir=1,
**kwargs)

‘Measure’ the time-profile of the propagating complex_field while passing through a plane.

The arguments axis, value and dir specify the plane and main propagation direction.

axis specifies the axis perpendicular to the measurement plane.

dir=1 specifies propagation towards positive axis, dir=-1 specifies the opposite direction of propagation.

value specifies the position of the plane along axis. If value=None, a default is chosen, depending on dir.

If dir=-1, the starting point of the axis is used, which lies at the 0-component of the inverse transform.

If dir=1, the end point of the axis + one axis spacing is used, which, via periodic boundary conditions of the fft,
also lies at the 0-component of the inverse transform.

If the given value differs from these defaults, an initial propagation with moving window will be performed,
such that the desired plane lies in the default position.

For example axis=’x’ and value=0.0 specifies the ‘x=0.0’ plane while dir=1 specifies propagation towards
positive ‘x’ values. The ‘x’ axis starts at 2e-5 and ends at 6e-5 with a grid spacing of 1e-6. The default value
for the measurement plane would have been 6.1e-5 so an initial backward propagation with dt = -6.1e-5/c is
performed to move the pulse in front of the’x=0.0 plane.

Additional kwargs are passed to kspace_propagate if they are not overridden by this function.

class postpic.ScalarProperty(expr, name=None, unit=None, symbol=None)
Bases: object

evaluate(vars)
vars must be a dictionary containing variables used within the expression “expr”.

expr

input_names
The list of variables used within this expression.

name

symbol

unit

class postpic.MultiSpecies(dumpreader, *speciess, **kwargs)
Bases: object

The MultiSpecies class. Different MultiSpecies can be added together to create a combined collection.

ignore_missing_species = False set to true to ignore missing species.

The MultiSpecies class will return a list of values for every particle property.

Ekin()
Deprecated since version unknown: The function Ekin is deprecated. Use self(“Ekin”) instead.

5.1. postpic 27

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

Ekin_MeV()
Deprecated since version unknown: The function Ekin_MeV is deprecated. Use self(“Ekin_MeV”) in-
stead.

Ekin_MeV_amu()
Deprecated since version unknown: The function Ekin_MeV_amu is deprecated. Use
self(“Ekin_MeV_amu”) instead.

Ekin_MeV_qm()
Deprecated since version unknown: The function Ekin_MeV_qm is deprecated. Use
self(“Ekin_MeV_qm”) instead.

Ekin_keV()
Deprecated since version unknown: The function Ekin_keV is deprecated. Use self(“Ekin_keV”) instead.

Ekin_keV_amu()
Deprecated since version unknown: The function Ekin_keV_amu is deprecated. Use
self(“Ekin_keV_amu”) instead.

Ekin_keV_qm()
Deprecated since version unknown: The function Ekin_keV_qm is deprecated. Use self(“Ekin_keV_qm”)
instead.

Eruhe()
Deprecated since version unknown: The function Eruhe is deprecated. Use self(“Eruhe”) instead.

ID()
Deprecated since version unknown: The function ID is deprecated. Use self(“id”) instead.

P()
Deprecated since version unknown: The function P is deprecated. Use self(“p”) instead.

Px()
Deprecated since version unknown: The function Px is deprecated. Use self(“px”) instead.

Py()
Deprecated since version unknown: The function Py is deprecated. Use self(“py”) instead.

Pz()
Deprecated since version unknown: The function Pz is deprecated. Use self(“pz”) instead.

V()
Deprecated since version unknown: The function V is deprecated. Use self(“v”) instead.

Vx()
Deprecated since version unknown: The function Vx is deprecated. Use self(“vx”) instead.

Vy()
Deprecated since version unknown: The function Vy is deprecated. Use self(“vy”) instead.

Vz()
Deprecated since version unknown: The function Vz is deprecated. Use self(“vz”) instead.

X()
Deprecated since version unknown: The function X is deprecated. Use self(“x”) instead.

X_um()
Deprecated since version unknown: The function X_um is deprecated. Use self(“x_um”) instead.

Y()
Deprecated since version unknown: The function Y is deprecated. Use self(“y”) instead.

28 Chapter 5. Postpic API Documentation

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

Y_um()
Deprecated since version unknown: The function Y_um is deprecated. Use self(“Y_mu”) instead.

Z()
Deprecated since version unknown: The function Z is deprecated. Use self(“z”) instead.

Z_um()
Deprecated since version unknown: The function Z_um is deprecated. Use self(“z_um”) instead.

add(dumpreader, species, ignore_missing_species=False)
adds a species to this MultiSpecies. This function modifies the current Object and always returns None.

species can be a single species name
or a reserved name for collection of species, such as ions adds all available particles that are ions
nonions adds all available particles that are not ions ejected noejected all

Optional arguments

ignore_missing_species = False
set to True to ignore if the species is missing.

angle_xaxis()
Deprecated since version unknown: The function angle_xaxis is deprecated. Use self(“angle_xaxis”)
instead.

angle_xy()
Deprecated since version unknown: The function angle_xy is deprecated. Use self(“angle_xy”) instead.

angle_xz()
Deprecated since version unknown: The function angle_xz is deprecated. Use self(“angle_xz”) instead.

angle_yx()
Deprecated since version unknown: The function angle_yx is deprecated. Use self(“angle_yx”) instead.

angle_yz()
Deprecated since version unknown: The function angle_yz is deprecated. Use self(“angle_yz”) instead.

angle_zx()
Deprecated since version unknown: The function angle_zx is deprecated. Use self(“angle_zx”) instead.

angle_zy()
Deprecated since version unknown: The function angle_zy is deprecated. Use self(“angle_zy”) instead.

beta()
Deprecated since version unknown: The function beta is deprecated. Use self(“beta”) instead.

betax()
Deprecated since version unknown: The function betax is deprecated. Use self(“betax”) instead.

betay()
Deprecated since version unknown: The function betay is deprecated. Use self(“betay”) instead.

betaz()
Deprecated since version unknown: The function betaz is deprecated. Use self(“betaz”) instead.

charge()
Deprecated since version unknown: The function charge is deprecated. Use self(“charge”) instead.

charge_e()
Deprecated since version unknown: The function charge_e is deprecated. Use self(“charge_e”) instead.

5.1. postpic 29

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

compress(condition, name=’unknown condition’)
works like numpy.compress. Returns a new MultiSpecies instance.

Additionaly you can specify a name, that gets saved in the compresslog.

condition has to be one out of: 1) condition = [True, False, True, True, . . . , True,
False] condition is a list of length N, specifing which particles to keep. Example: cfintospec-
trometer = lambda x: x.angle_offaxis() < 30e-3 cfintospectrometer.name = ‘< 30mrad offaxis’
pa.compress(cfintospectrometer(pa), name=cfintospectrometer.name) 2) condition = [1, 2, 4, 5, 9, . . . ,
805, 809] condition can be a list of arbitraty length, so only the particles with the ids listed here are kept.

name – name the condition. This can later be reviewed by calling ‘self.compresslog()’

compressfn(conditionf, name=’unknown condition’)
like “compress”, but accepts a function.

Returns a new MultiSpecies instance.

name – name the condition.

createField(*sps, **kwargs)
Creates an n-d Histogram enclosed in a Field object.

Parameters

• *sps – list of scalarfunctions/strings/scalar-properties, that will be evaluated to data for
each axis. the number of args given determins the dimensionality of the field returned by
this function (maximum 3)

• name (string, optional) – addes a name. usually used for generating savenames.
Defaults to “distfn”.

• title (string, options) – overrides the title. Autocreated if title==None. Defaults
to None.

• rangex (list of two values, optional) – the xrange to include into the his-
togram. Defaults to None, determins the range by the range of scalars given.

• rangey (list of two values, optional) – the yrange to include into the his-
togram. Defaults to None, determins the range by the range of scalars given.

• rangez (list of two values, optional) – the zrange to include into the his-
togram. Defaults to None, determins the range by the range of scalars given.

dumpreader
returns the dumpreader if the dumpreader of all species are pointing to the same dump. This should be
mostly the case.

Otherwise returns None.

filter(condition, name=None)
like compress, but takes a ScalarProperty or a str, which are required to evaluate to a boolean list to filter
particles. This is the preferred method to filter particles by a value of their property.

Returns a new MultiSpecies instance.

gamma()
Deprecated since version unknown: The function gamma is deprecated. Use self(“gamma”) instead.

gamma_m1()
Deprecated since version unknown: The function gamma_m1 is deprecated. Use self(“gamma_m1”) in-
stead.

getcompresslog()

30 Chapter 5. Postpic API Documentation

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

initial_npart
Original number of particles (before the use of compression or filter).

mass()
Deprecated since version unknown: The function mass is deprecated. Use self(“mass”) instead.

mass_u()
Deprecated since version unknown: The function mass_u is deprecated. Use self(“mass_u”) instead.

mean(expr, weights=’1’)
the mean of a value given by the function func. The particle weight of the individual particles will be
included in the calculation. An additional weight can be given as well.

median(expr, weights=’1’)
The median

name
an alias to self.species

npart
Number of Particles.

nspecies
Number of species.

quantile(expr, q, weights=’1’)
The qth-quantile of the distribution.

r_xy()
Deprecated since version unknown: The function r_xy is deprecated. Use self(“r_xy”) instead.

r_xyz()
Deprecated since version unknown: The function r_xyz is deprecated. Use self(“r_xyz”) instead.

r_yz()
Deprecated since version unknown: The function r_yz is deprecated. Use self(“r_yz”) instead.

r_zx()
Deprecated since version unknown: The function r_zx is deprecated. Use self(“r_zx”) instead.

simextent(axis)
the combined simextent for all species and dumps included in this MultiSpecies object.

simgridpoints(axis)
this function is for convenience only and is likely to be removed in the future. Particlarly it is impossible
to define the grid of the simulation if the MultiSpecies object consists of multiple dumps from different
simulations.

species
returns an string name for the species involved. Basically only returns unique names from all species (used
for plotting and labeling purposes – not for completeness). May be overwritten.

speciess
a complete list of all species involved.

time()
Deprecated since version unknown: The function time is deprecated. Use self(“time”) instead.

uncompress()
Returns a new MultiSpecies instance, with all previous calls of “compress” or “filter” undone.

var(expr, weights=’1’)
variance

5.1. postpic 31

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

weight()
Deprecated since version unknown: The function weight is deprecated. Use self(“weight”) instead.

class postpic.ParticleHistory(sr, speciess, ids=None)
Bases: object

Represents a list of particles including their history that can be found in all the dumps defined by the simulation
reader sr.

Parameters

• sr (iterable of datareader) – a collection of datareader to use. Usually a Simu-
lationreader object

• speciess (string or iterable of strings) – a species name or a list of
species names. Those particles can be included into the history.

• ids (iterable of int) – list of ids to use (default: None). If this is None all particles
in speciess will be tracked. If a list of ids is given, these ids will be serached in speciess
only.

collect(*scalarfs)
Collects the given particle properties for all particles for all times.

*scalarfs: the scalarfunction(s) defining the particle property

numpy.ndarray holding the different particles in the same order as the list of self.ids, meaning the particle
on position particle_idx has the ID self.ids[particle_idx]. every array element holds the history for a single
particle. Indexorder of returned array: [particle_idx][scalarf_idx, collection_idx]

skip(n)
takes only everth (n+1)-th particle

postpic.histogramdd(data, **kwargs_in)
Creates a histogram of the data. This function has the similar signature and return values as numpy.histogramdd.
In addition this function supports the shape keyword argument to choose the particle shape used. If used with
shape=0 the results of this function and the numpy.histogramdd are identical, however, this function is approx.
factor 2 or 3 faster.

Parameters

• data (sequence of ndarray or ndarray (1D or 2D)) –

The input (particle) data for the histogram.

– A 1D numpy array (for 1D histogram).

– A sequence providing the data for the different axis, i.e. (datax, datay, dataz) (pre-
ferred).

– A (N, D)-array, i.e. [[x1, y1, z1], [x2, y2, z2]] – must be a numpy array!

• bins (sequence or int) – The number of bins to use for each dimension

• range (sequence, optional) – A sequence of lower and upper bin edges to be used
if the edges are not given explicitly in bins. Defaults to the minimum and maximum values
along each dimension.

• weights (1D numpy array) – The weights to be used for each data point

• shape (int) –

possible choices are:

– 0 - use nearest grid point (NGP)

32 Chapter 5. Postpic API Documentation

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

– 1 - use tophat shape of width 1 bin

– 2 - triangular shape (default)

– 3 - spline 3 shape

Returns

• H (ndarray) – the final histogram

• edges (list) – A list of D arrays describing the edges for each dimension

class postpic.SpeciesIdentifier
Bases: postpic.helper.PhysicalConstants

This Class provides static methods for deriving particle properties from species Names. The only reason for this
to be a class is that it can be used as a mixin.

classmethod identifyspecies(species)
Returns a dictionary containing particle informations deduced from the species name. The following keys
in the dictionary will always be present: name species name string mass kg (SI) charge C (SI) tracer
boolean ejected boolean

Valid Examples: Periodic Table symbol + charge state: c6, F2, H1, C6b ionm#c# defining mass and
charge: ionm12c2, ionc20m110 advanced examples: ejected_tracer_ionc5m20b, ejected_tracer_electronx,
ejected_c6b, tracer_proton, protonb

static isejected(species)

classmethod ision(species)

postpic.chooseCode(code)
Chooses appropriate reader for the given simulation code. After choosing a preset of the correct reader, the
functions postpic.readDump() and postpic.readSim() are setup for this preset.

Parameters code (string) –

Possible options are:

• ”DUMMY”: dummy class creating fake data.

• ”EPOCH”: .sdf files written by EPOCH1D, EPOCH2D or EPOCH3D.

• ”openPMD”: .h5 files written in openPMD Standard

• ”piconGPU”: same as “openPMD”

• ”VSIM”: .hdf5 files written by VSim.

postpic.readDump(dumpidentifier, **kwargs)
After using the fucntion postpic.chooseCode(), this function should be the main function for reading a
dump into postpic.

Parameters

• dumpidentifier (str) – Identifies the dump. For most dumpreaders this is a string
poining to the file or folder. See what the specific reader of your format expects.

• **kwargs – will be forwarded to the dumpreader.

Returns the dumpreader for this specific data dump.

Return type Dumpreader

postpic.readSim(simidentifier, **kwargs)
After using the function postpic.chooseCode(), this function should be the main function for reading a

5.1. postpic 33

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

simulation into postpic. A simulation is equivalent to a series of dumps in a specific order (not neccessarily time
order).

Parameters

• simidentifier (str) – Identifies the simulation. For EPOCH this should be a string
pointing to a .visit file. Specifics depend on the current simreader class, as set by chooseC-
ode.

• **kwargs – will be forwarded to the simreader.

Returns the Simulationreader

postpic.export_field(filename, field, **kwargs)
export Field object as a file. Format depends on the extention of the filename. Currently supported are: .npz:

uses numpy.savez.

.csv: uses numpy.savetxt.

.vtk: vtk export to paraview

postpic.load_field(filename)
construct a new field object from file. currently, the following file formats are supported: *.npz

postpic.export_scalar_vtk(filename, scalarfield, **kwargs)
exports one 2D or 3D scalar field object to a VTK file which is suitable for viewing in ParaView. It is assumed
that all fields are defined on the same grid.

postpic.export_scalars_vtk(filename, *fields, **kwargs)
exports a set of scalar fields to a VTK file suitable for viewing in ParaView. Up to four fields may be given

postpic.export_vector_vtk(filename, *fields, **kwargs)
exports a vector field to a VTK file suitable for viewing in ParaView. Three 3D fields are expected, which will
form the X, Y and Z component of the vector field. If less than tree fields are given, the missing components
will be assumed to be zero.

5.1.1.1 Subpackages

postpic.datareader package

The Datareader package contains methods and interfaces to read data from any Simulation.

The basic concept consits of two different types of readers:

The Dumpreader

This has to be subclassed from Dumpreader_ifc and allows to read a single dump created by the simulation. To identify
which dump should be read its initialized with a dumpidentifier. This dumpidentifier can be almost anything, but in
the easiest case this is the filepath pointing to a single file containing every information about this simulation dump.
With this information the dumpreader must be able to read all data regarding this dump (which is a lot: X, Y, Z, Px,
Py, Py, weight, mass, charge, ID,.. for all particle species, electric and magnetic fields on grid, the grid itself, mabe
particle ids,. . .)

34 Chapter 5. Postpic API Documentation

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

The Simulationreader

This has to be subclassed from Simulationreader_ifc and allows to read a full list of simulation dumps. Thus an
alternate Name for this class could be “Dumpsequence”. This allows the code to track particles from different times
of the simulation or create plots with a time axis.

Stephan Kuschel 2014

postpic.datareader.chooseCode(code)
Chooses appropriate reader for the given simulation code. After choosing a preset of the correct reader, the
functions postpic.readDump() and postpic.readSim() are setup for this preset.

Parameters code (string) –

Possible options are:

• ”DUMMY”: dummy class creating fake data.

• ”EPOCH”: .sdf files written by EPOCH1D, EPOCH2D or EPOCH3D.

• ”openPMD”: .h5 files written in openPMD Standard

• ”piconGPU”: same as “openPMD”

• ”VSIM”: .hdf5 files written by VSim.

postpic.datareader.readDump(dumpidentifier, **kwargs)
After using the fucntion postpic.chooseCode(), this function should be the main function for reading a
dump into postpic.

Parameters

• dumpidentifier (str) – Identifies the dump. For most dumpreaders this is a string
poining to the file or folder. See what the specific reader of your format expects.

• **kwargs – will be forwarded to the dumpreader.

Returns the dumpreader for this specific data dump.

Return type Dumpreader

postpic.datareader.readSim(simidentifier, **kwargs)
After using the function postpic.chooseCode(), this function should be the main function for reading a
simulation into postpic. A simulation is equivalent to a series of dumps in a specific order (not neccessarily time
order).

Parameters

• simidentifier (str) – Identifies the simulation. For EPOCH this should be a string
pointing to a .visit file. Specifics depend on the current simreader class, as set by chooseC-
ode.

• **kwargs – will be forwarded to the simreader.

Returns the Simulationreader

postpic.datareader.setdumpreadercls(dumpreadercls)
Sets the class that is used for reading dumps on later calls of postpic.readDump().

Parameters dumpreadercls (Dumpreader_ifc) –

Note: This should only be used, for testing. A set of presets is provided by postpic.chooseCode().

5.1. postpic 35

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

postpic.datareader.setsimreadercls(simreadercls)
Sets the class that is used for reading a simulation on later calls of postpic.readSim().

Parameters simreadercls (Simulationreader_ifc) –

Note: This should only be used, for testing. A set of presets is provided by postpic.chooseCode().

class postpic.datareader.Dumpreader_ifc(dumpidentifier, name=None)
Bases: postpic._field_calc.FieldAnalyzer

Interface class for reading a single dump. A dump contains informations about the simulation at a single timestep
(Usually E- and B-Fields on grid + particles).

Any Dumpreader_ifc implementation will always be initialized using a dumpidentifier. This dumpidentifier can
be anything, that points to the data of a dump. In the easiest case this is just the filename of the dump holding
all data of that timestep (for example .sdf file for EPOCH, .hdf5 for some other code).

The dumpreader should provide all necessary informations in a unified interface but at the same time it should
not restrict the user to these properties of there dump only. The recommended implementation is shown here
(EPOCH and VSim reader work like this): All (!) data, that is saved in a single dump should be accessible via
the self.__getitem__(key) method. Together with the self.keys() method, this will ensure, that every dumpreader
works as a dictionary and every dump attribute is accessible via this dictionary.

• Level 0:

__getitem__ and keys(self) are level 0 methods, meaning it must be possible to access everthing with those
methods.

• Level 1:

provide direct data access by forwarding the requests to the corresponding Level 0 or Level 1 methods.

• Level 2:

provide user access to the data by forwarding the request to Level 1 or Level 2 methods, but NOT to Level 0
methods.

If some attribute wasnt dumped a KeyError must be thrown. This allows classes which are using the reader to
just exit if a needed property wasnt dumped or to catch the KeyError and proceed by actively ignoring it.

It is highly recommended to also override the functions __str__ and gridpoints.

Parameters dumpidentifier – variable type whatever identifies the dump. It is recommended
to use a String here pointing to a file.

data(key)
access to every raw data. needs to return numpy arrays corresponding to the “key”.

dataB(component, **kwargs)

dataE(component, **kwargs)

getSpecies(species, attrib)
This function gives access to any of the particle properties in ..helper.attribidentify This method can behave
in the following ways: 1) Return a list of scalar properties for each particle of this species 2) Return a single
float (i.e. 1.2, NOT [1.2]) to show that

every particle of this species has the same scalar value to thisdimmax property assigned. This
might be quite often used for charge or mass that are defined per species.

3. Raise a KeyError if the requested property or species wasn dumped.

36 Chapter 5. Postpic API Documentation

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

gridkeyB(component, **kwargs)

gridkeyE(component, **kwargs)

gridnode(key, axis)
The grid nodes along “axis”. Grid nodes include the beginning and the end of the grid. Example: If the
grid has 20 grid points, it has 21 grid nodes or grid edges.

gridoffset(key, axis)
offset of the beginning of the first cell of the grid.

gridpoints(key, axis)
Number of grid points along “axis”. It is highly recommended to override this method due to performance
reasons.

gridspacing(key, axis)
size of one grid cell in the direction “axis”.

keys()

Returns a list of keys, that can be used in __getitem__ to read any information from this dump.

listSpecies()

name

simdimensions()
the number of spatial dimensions the simulations was using. Must be 1, 2 or 3.

simextent(axis)
returns the extent of the actual simulation box. Override in your own reader class for better performance
implementation.

simgridpoints(axis)

simgridspacing(axis)

time()

timestep()

class postpic.datareader.Simulationreader_ifc(simidentifier, name=None)
Bases: collections.abc.Sequence

Interface for reading the data of a full Simulation.

Any Simulationreader_ifc implementation will always be initialized using a simidentifier. This simidentifier can
be anything, that points to the data of multiple dumps. In the easiest case this can be the .visit file.

The Simulationreader_ifc is subclass of collections.Sequence and will thus behave as a Sequence. The Objects
in the Sequence are supposed to be subclassed from Dumpreader_ifc.

It is highly recommended to also override the __str__ function.

Parameters simidentifier – variable type something identifiying a series of dumps.

name

times()

5.1. postpic 37

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

Submodules

postpic.datareader.datareader module

class postpic.datareader.datareader.Dumpreader_ifc(dumpidentifier, name=None)
Bases: postpic._field_calc.FieldAnalyzer

Interface class for reading a single dump. A dump contains informations about the simulation at a single timestep
(Usually E- and B-Fields on grid + particles).

Any Dumpreader_ifc implementation will always be initialized using a dumpidentifier. This dumpidentifier can
be anything, that points to the data of a dump. In the easiest case this is just the filename of the dump holding
all data of that timestep (for example .sdf file for EPOCH, .hdf5 for some other code).

The dumpreader should provide all necessary informations in a unified interface but at the same time it should
not restrict the user to these properties of there dump only. The recommended implementation is shown here
(EPOCH and VSim reader work like this): All (!) data, that is saved in a single dump should be accessible via
the self.__getitem__(key) method. Together with the self.keys() method, this will ensure, that every dumpreader
works as a dictionary and every dump attribute is accessible via this dictionary.

• Level 0:

__getitem__ and keys(self) are level 0 methods, meaning it must be possible to access everthing with those
methods.

• Level 1:

provide direct data access by forwarding the requests to the corresponding Level 0 or Level 1 methods.

• Level 2:

provide user access to the data by forwarding the request to Level 1 or Level 2 methods, but NOT to Level 0
methods.

If some attribute wasnt dumped a KeyError must be thrown. This allows classes which are using the reader to
just exit if a needed property wasnt dumped or to catch the KeyError and proceed by actively ignoring it.

It is highly recommended to also override the functions __str__ and gridpoints.

Parameters dumpidentifier – variable type whatever identifies the dump. It is recommended
to use a String here pointing to a file.

data(key)
access to every raw data. needs to return numpy arrays corresponding to the “key”.

dataB(component, **kwargs)

dataE(component, **kwargs)

getSpecies(species, attrib)
This function gives access to any of the particle properties in ..helper.attribidentify This method can behave
in the following ways: 1) Return a list of scalar properties for each particle of this species 2) Return a single
float (i.e. 1.2, NOT [1.2]) to show that

every particle of this species has the same scalar value to thisdimmax property assigned. This
might be quite often used for charge or mass that are defined per species.

3. Raise a KeyError if the requested property or species wasn dumped.

gridkeyB(component, **kwargs)

gridkeyE(component, **kwargs)

38 Chapter 5. Postpic API Documentation

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

gridnode(key, axis)
The grid nodes along “axis”. Grid nodes include the beginning and the end of the grid. Example: If the
grid has 20 grid points, it has 21 grid nodes or grid edges.

gridoffset(key, axis)
offset of the beginning of the first cell of the grid.

gridpoints(key, axis)
Number of grid points along “axis”. It is highly recommended to override this method due to performance
reasons.

gridspacing(key, axis)
size of one grid cell in the direction “axis”.

keys()

Returns a list of keys, that can be used in __getitem__ to read any information from this dump.

listSpecies()

name

simdimensions()
the number of spatial dimensions the simulations was using. Must be 1, 2 or 3.

simextent(axis)
returns the extent of the actual simulation box. Override in your own reader class for better performance
implementation.

simgridpoints(axis)

simgridspacing(axis)

time()

timestep()

class postpic.datareader.datareader.Simulationreader_ifc(simidentifier,
name=None)

Bases: collections.abc.Sequence

Interface for reading the data of a full Simulation.

Any Simulationreader_ifc implementation will always be initialized using a simidentifier. This simidentifier can
be anything, that points to the data of multiple dumps. In the easiest case this can be the .visit file.

The Simulationreader_ifc is subclass of collections.Sequence and will thus behave as a Sequence. The Objects
in the Sequence are supposed to be subclassed from Dumpreader_ifc.

It is highly recommended to also override the __str__ function.

Parameters simidentifier – variable type something identifiying a series of dumps.

name

times()

postpic.datareader.dummy module

Dummy reader for creating fake simulation Data for testing purposes.

Stephan Kuschel 2014

5.1. postpic 39

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

class postpic.datareader.dummy.Dummyreader(dumpid, dimensions=2, randfunc=<built-in
method normal of mtrand.RandomState ob-
ject>, seed=0, **kwargs)

Bases: postpic.datareader.datareader.Dumpreader_ifc

Dummyreader creates fake Data for testing purposes.

Parameters dumpid – int the dumpidentifier is the dumpid in this case. It is a float variable, that
will also change the dummyreaders output (for example it will pretend to have dumpid many
particles).

data(axis)

getSpecies(species, attrib)

grid(key, axis)

Parameters axis – string or int the axisidentifier

Returns: list of grid points of the axis specified.

Thus only regular grids are supported currently.

gridnode(key, axis)

Parameters axis – string or int the axisidentifier

Returns: list of grid points of the axis specified.

Thus only regular grids are supported currently.

gridoffset(key, axis)

gridspacing(key, axis)

keys()

listSpecies()

simdimensions()

simextent(axis)

simgridpoints(axis)

time()

timestep()

class postpic.datareader.dummy.Dummysim(simidentifier, dimensions=2, **kwargs)
Bases: postpic.datareader.datareader.Simulationreader_ifc

postpic.datareader.epochsdf module

Reader for SDF File format written by the EPOCH Code.

Dependecies:

• sdf: The actual python reader for the .sdf file format written in C. It is part of the EPOCH code base and
needs to be compiled and installed from there.

Written by Stephan Kuschel 2014, 2015

class postpic.datareader.epochsdf.Sdfreader(sdffile, **kwargs)
Bases: postpic.datareader.datareader.Dumpreader_ifc

40 Chapter 5. Postpic API Documentation

https://github.com/keithbennett/SDF
https://cfsa-pmw.warwick.ac.uk/EPOCH/epoch
https://cfsa-pmw.warwick.ac.uk/EPOCH/epoch

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

The Reader implementation for Data written by the EPOCH Code in .sdf format. Written for SDF v2.2.0 or
higher. SDF can be obtained without EPOCH from SDF.

Parameters sdffile – String A String containing the relative Path to the .sdf file.

data(key)

getSpecies(species, attrib)
Returns one of the attributes out of (x,y,z,px,py,pz,weight,ID,mass,charge) of this particle species. raises
KeyError if the requested species or property wasnt dumped.

getderived()
Returns all Keys starting with “Derived/”.

gridoffset(key, axis)

gridpoints(key, axis)

gridspacing(key, axis)

keys()

listSpecies()

simdimensions()

simextent(axis)
Returns the extent of the actual simulation box.

simgridpoints(axis)
Returns the number of grid points of the actual simulation.

time()

timestep()

class postpic.datareader.epochsdf.Visitreader(visitfile, dumpreadercls=<class ’post-
pic.datareader.epochsdf.Sdfreader’>,
**kwargs)

Bases: postpic.datareader.datareader.Simulationreader_ifc

Reads a series of dumps specified in a .visit file. This is specifically written for .visit files from the EPOCH
code, but should also work for any other code using these files.

postpic.datareader.openPMDh5 module

Support for hdf5 files following the openPMD Standard.

Dependecies:

• h5py: read hdf5 files with python

Written by Stephan Kuschel 2016

class postpic.datareader.openPMDh5.OpenPMDreader(h5file, **kwargs)
Bases: postpic.datareader.datareader.Dumpreader_ifc

The Reader implementation for Data written in the hdf5 file format following openPMD naming conventions.

Parameters h5file – String A String containing the relative Path to the .h5 file.

data(key)
should work with any key, that contains data, thus on every hdf5.Dataset, but not on hdf5.Group. Will
extract the data, convert it to SI and return it as a numpy array. Constant records will be detected and
converted to a numpy array containing a single value only.

5.1. postpic 41

https://cfsa-pmw.warwick.ac.uk/EPOCH/epoch
https://github.com/keithbennett/SDF
https://cfsa-pmw.warwick.ac.uk/EPOCH/epoch
https://github.com/keithbennett/SDF
https://cfsa-pmw.warwick.ac.uk/EPOCH/epoch
https://github.com/openPMD/openPMD-standard
https://github.com/openPMD/openPMD-standard

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

getSpecies(species, attrib)
Returns one of the attributes out of (x,y,z,px,py,pz,weight,ID,mass,charge) of this particle species.

getderived()
return all other fields dumped, except E and B.

gridoffset(key, axis)

gridpoints(key, axis)

gridspacing(key, axis)

keys()

listSpecies()

simdimensions()
the number of spatial dimensions the simulation was using.

time()

timestep()

class postpic.datareader.openPMDh5.FileSeries(simidentifier, dumpread-
ercls=<class ’post-
pic.datareader.openPMDh5.OpenPMDreader’>,
**kwargs)

Bases: postpic.datareader.datareader.Simulationreader_ifc

Reads a time series of dumps from a given directory. The simidentifier is expanded using glob in order to find
matching files.

postpic.datareader.vsimhdf5 module

Reader for HDF5 File format written by the VSim Code: http://www.txcorp.com/support/vsim-support-menu/
vsim-documentation Dependecies: h5py The Python actual reader for hdf5 file format. Georg Wittig, Stephan Kuschel
2014

class postpic.datareader.vsimhdf5.Hdf5reader(h5file, **kwargs)
Bases: postpic.datareader.datareader.Dumpreader_ifc

The Reader implementation for HDF5 Data written by the VSim Code. as argument h5file can be any *.h5 file
of the dump of consideration.

dataB(axis, **kwargs)

dataE(axis, **kwargs)

getSpecies(species, attrib)
Returns one of the attributes out of (x,y,z,px,py,pz,weight,ID) of this particle species. Valid Scalar at-
tributes are (mass, charge).

getderived()
Returns all Keys starting with “Derived/”.

grid(axis)
returns the array of the positions of all cells on axis = axis.

keys()

listSpecies()
returns all h5 dumps that have a attribute “mass”

simdimensions()

42 Chapter 5. Postpic API Documentation

http://www.txcorp.com/support/vsim-support-menu/vsim-documentation
http://www.txcorp.com/support/vsim-support-menu/vsim-documentation

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

time()

timestep()

class postpic.datareader.vsimhdf5.VSimReader(path, **kwargs)
Bases: postpic.datareader.datareader.Simulationreader_ifc

Represents a full Simulation (= Series of Dumps with equal output). The VSimReader must be initialized with
the path to a folder containing all the dumps. It will then walk through all available .h5 files in this directory to
identify the available timesteps of the simulation.

getDumpreader(index)

postpic.io package

The postpic.io module provides free functions for importing and exporting data.

postpic.io.export_field(filename, field, **kwargs)
export Field object as a file. Format depends on the extention of the filename. Currently supported are: .npz:

uses numpy.savez.

.csv: uses numpy.savetxt.

.vtk: vtk export to paraview

postpic.io.load_field(filename)
construct a new field object from file. currently, the following file formats are supported: *.npz

postpic.io.export_scalar_vtk(filename, scalarfield, **kwargs)
exports one 2D or 3D scalar field object to a VTK file which is suitable for viewing in ParaView. It is assumed
that all fields are defined on the same grid.

postpic.io.export_scalars_vtk(filename, *fields, **kwargs)
exports a set of scalar fields to a VTK file suitable for viewing in ParaView. Up to four fields may be given

postpic.io.export_vector_vtk(filename, *fields, **kwargs)
exports a vector field to a VTK file suitable for viewing in ParaView. Three 3D fields are expected, which will
form the X, Y and Z component of the vector field. If less than tree fields are given, the missing components
will be assumed to be zero.

Submodules

postpic.io.common module

The postpic.io module provides free functions for importing and exporting data.

postpic.io.csv module

The postpic.io module provides free functions for importing and exporting data.

postpic.io.npy module

The postpic.io module provides free functions for importing and exporting data.

5.1. postpic 43

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

postpic.io.vtk module

The postpic.io.vtk module provides classes and functions to export fields to the vtk 2.0 legacy file format.

The files are written in binary form and may have single or double precision.

The vtk exporter is built up from multiple classes, representing the different parts of data that are put into a vtk file:

VtkFile: represents the actual file to be written. Works as a context-manager that opens and initializes the file
on __enter__ and closes the file on __exit__. Next to the actual file object vtkfile.file, it carries the attributes
vtkfile.type, vtkfile.dtype‘ and vtkfile.mode, which are later used to make sure the file is written in the intended
format.

VtkData: represents the data that should be written to a file. Has a “tofile” method that will create a VtkFile
and pass it to the “tofile” methods of the other objects that carry the actual data. VtkData stores one object
that is an instance of DataSet that defines the grid that the data lives on and one or more objects that are in-
stances of Data that contain the data to be exported.

DataSet: Superclass for different types of grid. Subclasses are StructuredPoints and RectilinearGrid. They have
classmethods .from_field which allow the creation of objects from a given Field.

Data: Superclass for representing either PointData or CellData. So far only PointData is used. This will be used
to contain a subclass of ‘ArrayData.

ArrayData: Superclass for representing a collection of Scalars or Vectors that are stored in an array that will be
created from one or more ‘Field‘s.

Using all of this, writing a vtk file with Scalar data attached to the points (PointData) of a StructuredGrid is as simple
as:

VtkData(StructuredPoints.from_field(scalarfield),

PointData(Scalars(scalarfield))

).tofile(filename)

class postpic.io.vtk.ArrayData(*fields, **kwargs)
Bases: object

Superclass to represent different kinds of data that can be attributed to Points or Cells and are given as an iterable
of Fields

tofile(vtk)

transform_data(dtype)

class postpic.io.vtk.CellData(arraydata)
Bases: postpic.io.vtk.Data

CellData associated with a DataSet

tofile(vtk)

class postpic.io.vtk.Data(arraydata)
Bases: object

Superclass to represent the attributed data associated with a DataSet.

tofile(vtk)

class postpic.io.vtk.DataSet
Bases: object

Superclass to represent different vtkDataSets

44 Chapter 5. Postpic API Documentation

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

class postpic.io.vtk.PointData(arraydata)
Bases: postpic.io.vtk.Data

PointData associated with a DataSet

tofile(vtk)

class postpic.io.vtk.RectilinearGrid(grid)
Bases: postpic.io.vtk.DataSet

Class to represent a vtkRectilinearGrid

classmethod from_field(field)

tofile(vtk)

class postpic.io.vtk.Scalars(*fields, **kwargs)
Bases: postpic.io.vtk.ArrayData

Class to represent a collection of Scalars

tofile(vtk)

class postpic.io.vtk.StructuredPoints(dimensions, origin, spacing)
Bases: postpic.io.vtk.DataSet

Class to represent a vtkStructuredPoints

classmethod from_field(field)

tofile(vtk)

class postpic.io.vtk.Vectors(*fields, **kwargs)
Bases: postpic.io.vtk.ArrayData

Class to represent Vectors

tofile(vtk)

class postpic.io.vtk.VtkData(dataset, *data)
Bases: object

Class to represent the data that should be written to a .vtk file. Uses VtkFile.

tofile(fname, type=’double’, mode=’binary’)

class postpic.io.vtk.VtkFile(fname, type=’double’, mode=’binary’)
Bases: object

Class used to write a .vtk file. Used by VtkData.

postpic.io.vtk.export_scalar_vtk(filename, scalarfield, **kwargs)
exports one 2D or 3D scalar field object to a VTK file which is suitable for viewing in ParaView. It is assumed
that all fields are defined on the same grid.

postpic.io.vtk.export_scalars_vtk(filename, *fields, **kwargs)
exports a set of scalar fields to a VTK file suitable for viewing in ParaView. Up to four fields may be given

postpic.io.vtk.export_vector_vtk(filename, *fields, **kwargs)
exports a vector field to a VTK file suitable for viewing in ParaView. Three 3D fields are expected, which will
form the X, Y and Z component of the vector field. If less than tree fields are given, the missing components
will be assumed to be zero.

5.1. postpic 45

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

postpic.particles package

class postpic.particles.ScalarProperty(expr, name=None, unit=None, symbol=None)
Bases: object

evaluate(vars)
vars must be a dictionary containing variables used within the expression “expr”.

expr

input_names
The list of variables used within this expression.

name

symbol

unit

class postpic.particles.MultiSpecies(dumpreader, *speciess, **kwargs)
Bases: object

The MultiSpecies class. Different MultiSpecies can be added together to create a combined collection.

ignore_missing_species = False set to true to ignore missing species.

The MultiSpecies class will return a list of values for every particle property.

Ekin()
Deprecated since version unknown: The function Ekin is deprecated. Use self(“Ekin”) instead.

Ekin_MeV()
Deprecated since version unknown: The function Ekin_MeV is deprecated. Use self(“Ekin_MeV”) in-
stead.

Ekin_MeV_amu()
Deprecated since version unknown: The function Ekin_MeV_amu is deprecated. Use
self(“Ekin_MeV_amu”) instead.

Ekin_MeV_qm()
Deprecated since version unknown: The function Ekin_MeV_qm is deprecated. Use
self(“Ekin_MeV_qm”) instead.

Ekin_keV()
Deprecated since version unknown: The function Ekin_keV is deprecated. Use self(“Ekin_keV”) instead.

Ekin_keV_amu()
Deprecated since version unknown: The function Ekin_keV_amu is deprecated. Use
self(“Ekin_keV_amu”) instead.

Ekin_keV_qm()
Deprecated since version unknown: The function Ekin_keV_qm is deprecated. Use self(“Ekin_keV_qm”)
instead.

Eruhe()
Deprecated since version unknown: The function Eruhe is deprecated. Use self(“Eruhe”) instead.

ID()
Deprecated since version unknown: The function ID is deprecated. Use self(“id”) instead.

P()
Deprecated since version unknown: The function P is deprecated. Use self(“p”) instead.

46 Chapter 5. Postpic API Documentation

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

Px()
Deprecated since version unknown: The function Px is deprecated. Use self(“px”) instead.

Py()
Deprecated since version unknown: The function Py is deprecated. Use self(“py”) instead.

Pz()
Deprecated since version unknown: The function Pz is deprecated. Use self(“pz”) instead.

V()
Deprecated since version unknown: The function V is deprecated. Use self(“v”) instead.

Vx()
Deprecated since version unknown: The function Vx is deprecated. Use self(“vx”) instead.

Vy()
Deprecated since version unknown: The function Vy is deprecated. Use self(“vy”) instead.

Vz()
Deprecated since version unknown: The function Vz is deprecated. Use self(“vz”) instead.

X()
Deprecated since version unknown: The function X is deprecated. Use self(“x”) instead.

X_um()
Deprecated since version unknown: The function X_um is deprecated. Use self(“x_um”) instead.

Y()
Deprecated since version unknown: The function Y is deprecated. Use self(“y”) instead.

Y_um()
Deprecated since version unknown: The function Y_um is deprecated. Use self(“Y_mu”) instead.

Z()
Deprecated since version unknown: The function Z is deprecated. Use self(“z”) instead.

Z_um()
Deprecated since version unknown: The function Z_um is deprecated. Use self(“z_um”) instead.

add(dumpreader, species, ignore_missing_species=False)
adds a species to this MultiSpecies. This function modifies the current Object and always returns None.

species can be a single species name
or a reserved name for collection of species, such as ions adds all available particles that are ions
nonions adds all available particles that are not ions ejected noejected all

Optional arguments

ignore_missing_species = False
set to True to ignore if the species is missing.

angle_xaxis()
Deprecated since version unknown: The function angle_xaxis is deprecated. Use self(“angle_xaxis”)
instead.

angle_xy()
Deprecated since version unknown: The function angle_xy is deprecated. Use self(“angle_xy”) instead.

angle_xz()
Deprecated since version unknown: The function angle_xz is deprecated. Use self(“angle_xz”) instead.

5.1. postpic 47

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

angle_yx()
Deprecated since version unknown: The function angle_yx is deprecated. Use self(“angle_yx”) instead.

angle_yz()
Deprecated since version unknown: The function angle_yz is deprecated. Use self(“angle_yz”) instead.

angle_zx()
Deprecated since version unknown: The function angle_zx is deprecated. Use self(“angle_zx”) instead.

angle_zy()
Deprecated since version unknown: The function angle_zy is deprecated. Use self(“angle_zy”) instead.

beta()
Deprecated since version unknown: The function beta is deprecated. Use self(“beta”) instead.

betax()
Deprecated since version unknown: The function betax is deprecated. Use self(“betax”) instead.

betay()
Deprecated since version unknown: The function betay is deprecated. Use self(“betay”) instead.

betaz()
Deprecated since version unknown: The function betaz is deprecated. Use self(“betaz”) instead.

charge()
Deprecated since version unknown: The function charge is deprecated. Use self(“charge”) instead.

charge_e()
Deprecated since version unknown: The function charge_e is deprecated. Use self(“charge_e”) instead.

compress(condition, name=’unknown condition’)
works like numpy.compress. Returns a new MultiSpecies instance.

Additionaly you can specify a name, that gets saved in the compresslog.

condition has to be one out of: 1) condition = [True, False, True, True, . . . , True,
False] condition is a list of length N, specifing which particles to keep. Example: cfintospec-
trometer = lambda x: x.angle_offaxis() < 30e-3 cfintospectrometer.name = ‘< 30mrad offaxis’
pa.compress(cfintospectrometer(pa), name=cfintospectrometer.name) 2) condition = [1, 2, 4, 5, 9, . . . ,
805, 809] condition can be a list of arbitraty length, so only the particles with the ids listed here are kept.

name – name the condition. This can later be reviewed by calling ‘self.compresslog()’

compressfn(conditionf, name=’unknown condition’)
like “compress”, but accepts a function.

Returns a new MultiSpecies instance.

name – name the condition.

createField(*sps, **kwargs)
Creates an n-d Histogram enclosed in a Field object.

Parameters

• *sps – list of scalarfunctions/strings/scalar-properties, that will be evaluated to data for
each axis. the number of args given determins the dimensionality of the field returned by
this function (maximum 3)

• name (string, optional) – addes a name. usually used for generating savenames.
Defaults to “distfn”.

• title (string, options) – overrides the title. Autocreated if title==None. Defaults
to None.

48 Chapter 5. Postpic API Documentation

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

• rangex (list of two values, optional) – the xrange to include into the his-
togram. Defaults to None, determins the range by the range of scalars given.

• rangey (list of two values, optional) – the yrange to include into the his-
togram. Defaults to None, determins the range by the range of scalars given.

• rangez (list of two values, optional) – the zrange to include into the his-
togram. Defaults to None, determins the range by the range of scalars given.

dumpreader
returns the dumpreader if the dumpreader of all species are pointing to the same dump. This should be
mostly the case.

Otherwise returns None.

filter(condition, name=None)
like compress, but takes a ScalarProperty or a str, which are required to evaluate to a boolean list to filter
particles. This is the preferred method to filter particles by a value of their property.

Returns a new MultiSpecies instance.

gamma()
Deprecated since version unknown: The function gamma is deprecated. Use self(“gamma”) instead.

gamma_m1()
Deprecated since version unknown: The function gamma_m1 is deprecated. Use self(“gamma_m1”) in-
stead.

getcompresslog()

initial_npart
Original number of particles (before the use of compression or filter).

mass()
Deprecated since version unknown: The function mass is deprecated. Use self(“mass”) instead.

mass_u()
Deprecated since version unknown: The function mass_u is deprecated. Use self(“mass_u”) instead.

mean(expr, weights=’1’)
the mean of a value given by the function func. The particle weight of the individual particles will be
included in the calculation. An additional weight can be given as well.

median(expr, weights=’1’)
The median

name
an alias to self.species

npart
Number of Particles.

nspecies
Number of species.

quantile(expr, q, weights=’1’)
The qth-quantile of the distribution.

r_xy()
Deprecated since version unknown: The function r_xy is deprecated. Use self(“r_xy”) instead.

r_xyz()
Deprecated since version unknown: The function r_xyz is deprecated. Use self(“r_xyz”) instead.

5.1. postpic 49

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

r_yz()
Deprecated since version unknown: The function r_yz is deprecated. Use self(“r_yz”) instead.

r_zx()
Deprecated since version unknown: The function r_zx is deprecated. Use self(“r_zx”) instead.

simextent(axis)
the combined simextent for all species and dumps included in this MultiSpecies object.

simgridpoints(axis)
this function is for convenience only and is likely to be removed in the future. Particlarly it is impossible
to define the grid of the simulation if the MultiSpecies object consists of multiple dumps from different
simulations.

species
returns an string name for the species involved. Basically only returns unique names from all species (used
for plotting and labeling purposes – not for completeness). May be overwritten.

speciess
a complete list of all species involved.

time()
Deprecated since version unknown: The function time is deprecated. Use self(“time”) instead.

uncompress()
Returns a new MultiSpecies instance, with all previous calls of “compress” or “filter” undone.

var(expr, weights=’1’)
variance

weight()
Deprecated since version unknown: The function weight is deprecated. Use self(“weight”) instead.

class postpic.particles.ParticleHistory(sr, speciess, ids=None)
Bases: object

Represents a list of particles including their history that can be found in all the dumps defined by the simulation
reader sr.

Parameters

• sr (iterable of datareader) – a collection of datareader to use. Usually a Simu-
lationreader object

• speciess (string or iterable of strings) – a species name or a list of
species names. Those particles can be included into the history.

• ids (iterable of int) – list of ids to use (default: None). If this is None all particles
in speciess will be tracked. If a list of ids is given, these ids will be serached in speciess
only.

collect(*scalarfs)
Collects the given particle properties for all particles for all times.

*scalarfs: the scalarfunction(s) defining the particle property

numpy.ndarray holding the different particles in the same order as the list of self.ids, meaning the particle
on position particle_idx has the ID self.ids[particle_idx]. every array element holds the history for a single
particle. Indexorder of returned array: [particle_idx][scalarf_idx, collection_idx]

skip(n)
takes only everth (n+1)-th particle

50 Chapter 5. Postpic API Documentation

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

postpic.particles.histogramdd(data, **kwargs_in)
Creates a histogram of the data. This function has the similar signature and return values as numpy.histogramdd.
In addition this function supports the shape keyword argument to choose the particle shape used. If used with
shape=0 the results of this function and the numpy.histogramdd are identical, however, this function is approx.
factor 2 or 3 faster.

Parameters

• data (sequence of ndarray or ndarray (1D or 2D)) –

The input (particle) data for the histogram.

– A 1D numpy array (for 1D histogram).

– A sequence providing the data for the different axis, i.e. (datax, datay, dataz) (pre-
ferred).

– A (N, D)-array, i.e. [[x1, y1, z1], [x2, y2, z2]] – must be a numpy array!

• bins (sequence or int) – The number of bins to use for each dimension

• range (sequence, optional) – A sequence of lower and upper bin edges to be used
if the edges are not given explicitly in bins. Defaults to the minimum and maximum values
along each dimension.

• weights (1D numpy array) – The weights to be used for each data point

• shape (int) –

possible choices are:

– 0 - use nearest grid point (NGP)

– 1 - use tophat shape of width 1 bin

– 2 - triangular shape (default)

– 3 - spline 3 shape

Returns

• H (ndarray) – the final histogram

• edges (list) – A list of D arrays describing the edges for each dimension

class postpic.particles.SpeciesIdentifier
Bases: postpic.helper.PhysicalConstants

This Class provides static methods for deriving particle properties from species Names. The only reason for this
to be a class is that it can be used as a mixin.

classmethod identifyspecies(species)
Returns a dictionary containing particle informations deduced from the species name. The following keys
in the dictionary will always be present: name species name string mass kg (SI) charge C (SI) tracer
boolean ejected boolean

Valid Examples: Periodic Table symbol + charge state: c6, F2, H1, C6b ionm#c# defining mass and
charge: ionm12c2, ionc20m110 advanced examples: ejected_tracer_ionc5m20b, ejected_tracer_electronx,
ejected_c6b, tracer_proton, protonb

static isejected(species)

classmethod ision(species)

5.1. postpic 51

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

Submodules

postpic.particles.particles module

Particle related routines.

class postpic.particles.particles.MultiSpecies(dumpreader, *speciess, **kwargs)
Bases: object

The MultiSpecies class. Different MultiSpecies can be added together to create a combined collection.

ignore_missing_species = False set to true to ignore missing species.

The MultiSpecies class will return a list of values for every particle property.

Ekin()
Deprecated since version unknown: The function Ekin is deprecated. Use self(“Ekin”) instead.

Ekin_MeV()
Deprecated since version unknown: The function Ekin_MeV is deprecated. Use self(“Ekin_MeV”) in-
stead.

Ekin_MeV_amu()
Deprecated since version unknown: The function Ekin_MeV_amu is deprecated. Use
self(“Ekin_MeV_amu”) instead.

Ekin_MeV_qm()
Deprecated since version unknown: The function Ekin_MeV_qm is deprecated. Use
self(“Ekin_MeV_qm”) instead.

Ekin_keV()
Deprecated since version unknown: The function Ekin_keV is deprecated. Use self(“Ekin_keV”) instead.

Ekin_keV_amu()
Deprecated since version unknown: The function Ekin_keV_amu is deprecated. Use
self(“Ekin_keV_amu”) instead.

Ekin_keV_qm()
Deprecated since version unknown: The function Ekin_keV_qm is deprecated. Use self(“Ekin_keV_qm”)
instead.

Eruhe()
Deprecated since version unknown: The function Eruhe is deprecated. Use self(“Eruhe”) instead.

ID()
Deprecated since version unknown: The function ID is deprecated. Use self(“id”) instead.

P()
Deprecated since version unknown: The function P is deprecated. Use self(“p”) instead.

Px()
Deprecated since version unknown: The function Px is deprecated. Use self(“px”) instead.

Py()
Deprecated since version unknown: The function Py is deprecated. Use self(“py”) instead.

Pz()
Deprecated since version unknown: The function Pz is deprecated. Use self(“pz”) instead.

V()
Deprecated since version unknown: The function V is deprecated. Use self(“v”) instead.

52 Chapter 5. Postpic API Documentation

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

Vx()
Deprecated since version unknown: The function Vx is deprecated. Use self(“vx”) instead.

Vy()
Deprecated since version unknown: The function Vy is deprecated. Use self(“vy”) instead.

Vz()
Deprecated since version unknown: The function Vz is deprecated. Use self(“vz”) instead.

X()
Deprecated since version unknown: The function X is deprecated. Use self(“x”) instead.

X_um()
Deprecated since version unknown: The function X_um is deprecated. Use self(“x_um”) instead.

Y()
Deprecated since version unknown: The function Y is deprecated. Use self(“y”) instead.

Y_um()
Deprecated since version unknown: The function Y_um is deprecated. Use self(“Y_mu”) instead.

Z()
Deprecated since version unknown: The function Z is deprecated. Use self(“z”) instead.

Z_um()
Deprecated since version unknown: The function Z_um is deprecated. Use self(“z_um”) instead.

add(dumpreader, species, ignore_missing_species=False)
adds a species to this MultiSpecies. This function modifies the current Object and always returns None.

species can be a single species name
or a reserved name for collection of species, such as ions adds all available particles that are ions
nonions adds all available particles that are not ions ejected noejected all

Optional arguments

ignore_missing_species = False
set to True to ignore if the species is missing.

angle_xaxis()
Deprecated since version unknown: The function angle_xaxis is deprecated. Use self(“angle_xaxis”)
instead.

angle_xy()
Deprecated since version unknown: The function angle_xy is deprecated. Use self(“angle_xy”) instead.

angle_xz()
Deprecated since version unknown: The function angle_xz is deprecated. Use self(“angle_xz”) instead.

angle_yx()
Deprecated since version unknown: The function angle_yx is deprecated. Use self(“angle_yx”) instead.

angle_yz()
Deprecated since version unknown: The function angle_yz is deprecated. Use self(“angle_yz”) instead.

angle_zx()
Deprecated since version unknown: The function angle_zx is deprecated. Use self(“angle_zx”) instead.

angle_zy()
Deprecated since version unknown: The function angle_zy is deprecated. Use self(“angle_zy”) instead.

5.1. postpic 53

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

beta()
Deprecated since version unknown: The function beta is deprecated. Use self(“beta”) instead.

betax()
Deprecated since version unknown: The function betax is deprecated. Use self(“betax”) instead.

betay()
Deprecated since version unknown: The function betay is deprecated. Use self(“betay”) instead.

betaz()
Deprecated since version unknown: The function betaz is deprecated. Use self(“betaz”) instead.

charge()
Deprecated since version unknown: The function charge is deprecated. Use self(“charge”) instead.

charge_e()
Deprecated since version unknown: The function charge_e is deprecated. Use self(“charge_e”) instead.

compress(condition, name=’unknown condition’)
works like numpy.compress. Returns a new MultiSpecies instance.

Additionaly you can specify a name, that gets saved in the compresslog.

condition has to be one out of: 1) condition = [True, False, True, True, . . . , True,
False] condition is a list of length N, specifing which particles to keep. Example: cfintospec-
trometer = lambda x: x.angle_offaxis() < 30e-3 cfintospectrometer.name = ‘< 30mrad offaxis’
pa.compress(cfintospectrometer(pa), name=cfintospectrometer.name) 2) condition = [1, 2, 4, 5, 9, . . . ,
805, 809] condition can be a list of arbitraty length, so only the particles with the ids listed here are kept.

name – name the condition. This can later be reviewed by calling ‘self.compresslog()’

compressfn(conditionf, name=’unknown condition’)
like “compress”, but accepts a function.

Returns a new MultiSpecies instance.

name – name the condition.

createField(*sps, **kwargs)
Creates an n-d Histogram enclosed in a Field object.

Parameters

• *sps – list of scalarfunctions/strings/scalar-properties, that will be evaluated to data for
each axis. the number of args given determins the dimensionality of the field returned by
this function (maximum 3)

• name (string, optional) – addes a name. usually used for generating savenames.
Defaults to “distfn”.

• title (string, options) – overrides the title. Autocreated if title==None. Defaults
to None.

• rangex (list of two values, optional) – the xrange to include into the his-
togram. Defaults to None, determins the range by the range of scalars given.

• rangey (list of two values, optional) – the yrange to include into the his-
togram. Defaults to None, determins the range by the range of scalars given.

• rangez (list of two values, optional) – the zrange to include into the his-
togram. Defaults to None, determins the range by the range of scalars given.

54 Chapter 5. Postpic API Documentation

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

dumpreader
returns the dumpreader if the dumpreader of all species are pointing to the same dump. This should be
mostly the case.

Otherwise returns None.

filter(condition, name=None)
like compress, but takes a ScalarProperty or a str, which are required to evaluate to a boolean list to filter
particles. This is the preferred method to filter particles by a value of their property.

Returns a new MultiSpecies instance.

gamma()
Deprecated since version unknown: The function gamma is deprecated. Use self(“gamma”) instead.

gamma_m1()
Deprecated since version unknown: The function gamma_m1 is deprecated. Use self(“gamma_m1”) in-
stead.

getcompresslog()

initial_npart
Original number of particles (before the use of compression or filter).

mass()
Deprecated since version unknown: The function mass is deprecated. Use self(“mass”) instead.

mass_u()
Deprecated since version unknown: The function mass_u is deprecated. Use self(“mass_u”) instead.

mean(expr, weights=’1’)
the mean of a value given by the function func. The particle weight of the individual particles will be
included in the calculation. An additional weight can be given as well.

median(expr, weights=’1’)
The median

name
an alias to self.species

npart
Number of Particles.

nspecies
Number of species.

quantile(expr, q, weights=’1’)
The qth-quantile of the distribution.

r_xy()
Deprecated since version unknown: The function r_xy is deprecated. Use self(“r_xy”) instead.

r_xyz()
Deprecated since version unknown: The function r_xyz is deprecated. Use self(“r_xyz”) instead.

r_yz()
Deprecated since version unknown: The function r_yz is deprecated. Use self(“r_yz”) instead.

r_zx()
Deprecated since version unknown: The function r_zx is deprecated. Use self(“r_zx”) instead.

simextent(axis)
the combined simextent for all species and dumps included in this MultiSpecies object.

5.1. postpic 55

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

simgridpoints(axis)
this function is for convenience only and is likely to be removed in the future. Particlarly it is impossible
to define the grid of the simulation if the MultiSpecies object consists of multiple dumps from different
simulations.

species
returns an string name for the species involved. Basically only returns unique names from all species (used
for plotting and labeling purposes – not for completeness). May be overwritten.

speciess
a complete list of all species involved.

time()
Deprecated since version unknown: The function time is deprecated. Use self(“time”) instead.

uncompress()
Returns a new MultiSpecies instance, with all previous calls of “compress” or “filter” undone.

var(expr, weights=’1’)
variance

weight()
Deprecated since version unknown: The function weight is deprecated. Use self(“weight”) instead.

class postpic.particles.particles.ParticleHistory(sr, speciess, ids=None)
Bases: object

Represents a list of particles including their history that can be found in all the dumps defined by the simulation
reader sr.

Parameters

• sr (iterable of datareader) – a collection of datareader to use. Usually a Simu-
lationreader object

• speciess (string or iterable of strings) – a species name or a list of
species names. Those particles can be included into the history.

• ids (iterable of int) – list of ids to use (default: None). If this is None all particles
in speciess will be tracked. If a list of ids is given, these ids will be serached in speciess
only.

collect(*scalarfs)
Collects the given particle properties for all particles for all times.

*scalarfs: the scalarfunction(s) defining the particle property

numpy.ndarray holding the different particles in the same order as the list of self.ids, meaning the particle
on position particle_idx has the ID self.ids[particle_idx]. every array element holds the history for a single
particle. Indexorder of returned array: [particle_idx][scalarf_idx, collection_idx]

skip(n)
takes only everth (n+1)-th particle

postpic.particles.scalarproperties module

class postpic.particles.scalarproperties.ScalarProperty(expr, name=None,
unit=None, sym-
bol=None)

Bases: object

56 Chapter 5. Postpic API Documentation

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

evaluate(vars)
vars must be a dictionary containing variables used within the expression “expr”.

expr

input_names
The list of variables used within this expression.

name

symbol

unit

postpic.plotting package

The plot subpackage should provide an interface to various plot backends.

postpic.plotting.use(plotcls)

Submodules

postpic.plotting.plotter_matplotlib module

This package provides the MatplotlibPlotter Class.

This Class can be used to plot Field Objects using the matplotlib interface.

class postpic.plotting.plotter_matplotlib.MatplotlibPlotter(reader, outdir=’./’,
autosave=False,
project=None,
ext=’png’,
size_inches=(9,
7), dpi=160, face-
color=(1, 1, 1, 0.01),
transparent=False)

Bases: object

Provides Methods to modify figures and axes objects for convenient plotting. It also autogenerates savenames
and annotates the plot if a reader is given. A reader can be a dumpreader or a simulationreder.

class LinearSegmentedColormap(name, segmentdata, N=256, gamma=1.0)
Bases: matplotlib.colors.Colormap

Colormap objects based on lookup tables using linear segments.

The lookup table is generated using linear interpolation for each primary color, with the 0-1 domain divided
into any number of segments.

static from_list(name, colors, N=256, gamma=1.0)
Make a linear segmented colormap with name from a sequence of colors which evenly transitions from
colors[0] at val=0 to colors[-1] at val=1. N is the number of rgb quantization levels. Alternatively, a
list of (value, color) tuples can be given to divide the range unevenly.

set_gamma(gamma)
Set a new gamma value and regenerate color map.

static addField1d(ax, field, log10plot=True, xlim=None, ylim=None, scaletight=None)

5.1. postpic 57

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

static addField2d(figax, field, log10plot=True, interpolation=’none’, contourlevels=array([],
dtype=float64), saveandclose=True, xlim=None, ylim=None, clim=None,
savecsv=False, lineoutx=False, lineouty=False, **kwargs)

static addFields1d(ax, *fields, **kwargs)

static addaxislabels(ax, field)

static annotate(figorax, title=None, time=None, step=None, project=None, dump=None, infos-
tring=None, infos=None)

static annotate_fromfield(figorax, field)

static annotate_fromreader(figorax, reader)

axesformatterx = <matplotlib.ticker.ScalarFormatter object>

axesformattery = <matplotlib.ticker.ScalarFormatter object>

efieldcdict = {'blue': ((0, 1, 1), (1, 0, 0)), 'green': ((0, 0, 0), (1, 0, 0)), 'red': ((0, 0, 0), (1, 1, 1)), 'alpha': ((0, 1, 1), (0.5, 0, 0), (1, 1, 1))}

lastsavename()
returns the last savenme. If there wasnt a last a new savename is created.

matplotlib = <module 'matplotlib' from '/usr/lib/python3/dist-packages/matplotlib/__init__.py'>

plotField(field, autoreduce=True, maxlen=6000, name=None, **kwargs)
This is the main method, that should be used for plotting.

plotField2d(field, name=None, **kwargs)

plotFields(*fields, **kwargs)

plotFields1d(*fields, **kwargs)

plotallderived(dumpreader)
plots all fields dumped.

project

savefig(fig, key)

savename(key, ext=None)

static settext_ax(ax, title=None, ur=None, ur2=None, ul=None, ul2=None, center=None)

static settext_fig(fig, title=None, ur=None, ur2=None, ul=None, ul2=None, center=None)

symmap = <matplotlib.colors.LinearSegmentedColormap object>

static symmetricclim(ax)
symmetrize the clim around 0.

static symmetricclimaximage(aximage)
symmetrize the clim around 0.

5.1.1.2 Submodules

5.1.1.3 postpic.datahandling module

The Core module for final data handling.

This module provides classes for dealing with axes, grid as well as the Field class – the final output of the postpic
postprocessor.

58 Chapter 5. Postpic API Documentation

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

Terminology

A data field with N numeric points has N ‘grid’ points, but N+1 ‘grid_nodes’ as depicted here:

+---+---+---+---+---+
| | | | | |
+---+---+---+---+---+
| | | | | |
+---+---+---+---+---+
| | | | | |
+---+---+---+---+---+

o o o o o grid (coordinates where data is sampled at)
o o o o o o grid_node (coordinates of grid cell boundaries)
| | extent

class postpic.datahandling.Field(matrix, name=”, unit=”, **kwargs)
Bases: postpic._compat.mixins.NDArrayOperatorsMixin

The Field Object carries data in form of an numpy.ndarray together with as many Axis objects as the data’s
dimensions. Additionaly the Field object provides any information that is necessary to plot _and_ annotate the
plot.

Create a Field object from scratch. The only required argument is matrix which contains the actual data.

A name and a unit may be supplied.

The axis may be specified in different ways:

• by passing a list of Axis object as axes

• by passing arrays with the grid_nodes as xedges, yedges and zedges. This is intended to work with
np.histogram.

• by not passing anything, which will create default axes from 0 to 1.

T
Return the Field with the order of axes reversed. In 2D this is the usual matrix transpose operation.

adjust_stagger_to(other)

all(axis=None, out=None, keepdims=False)
Returns True if all elements evaluate to True.

Refer to numpy.all for full documentation.

See also:

numpy.all() equivalent function

angle

any(axis=None, out=None, keepdims=False)
Returns True if any of the elements of a evaluate to True.

Refer to numpy.any for full documentation.

See also:

numpy.any() equivalent function

atleast_nd(n)
Make sure the field has at least ‘n’ dimensions

5.1. postpic 59

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

autocutout(axes=None, fractions=(0.001, 0.002))
Automatically cuts out the main feature of the field by removing border regions that only contain small
numbers.

This is done axis by axis. For each axis, the mean across all other axes is taken. The maximum max of
the remaining 1d-array is taken and searched for the outermost boundaries a, d such that all values out
of array[a:d] are smaller then fractions[0]*max. A second set of boundaries b, c is searched such that
all values out of array[b:c] are smaller then fractions[1]*max. Because fractions[1] should be larger than
fractions[0], array[b:c] should be contained completely in array[a:d].

A padding length x is chosen such that array[b-x:c+x] is entirely within array[a:d].

Then the corresponding axis of the field is sliced to [b-x:c+x] and multiplied with a tukey-window such
that the region [b:c] is left untouched and the field in the padding region smoothly vanishes on the outer
border.

This process is repeated for all axes in axes or for all axes if axes is None.

autoreduce(maxlen=4000)
Reduces the Grid to a maximum length of maxlen per dimension by just executing half_resolution as often
as necessary.

clip(a_min, a_max, out=None)

conj()

cutout(newextent)
only keeps that part of the data, that belongs to newextent.

dimensions
returns only present dimensions. [] and [[]] are interpreted as -1 np.array(2) is interpreted as 0
np.array([1,2,3]) is interpreted as 1 and so on. . .

ensure_frequency_domain()

ensure_spatial_domain()

ensure_transform_state(transform_states)
Makes sure that the field has the given transform_states. transform_states may be a single boolean, indi-
cating the same desired transform_state for all axes. It may be a list of the desired transform states for all
the axes or a dictionary indicating the desired transform states of specific axes.

export(filename, **kwargs)

Uses postpic.export_field to export this field to a file. All ‘‘**kwargs‘ will be forwarded to this
function. Format is recognized by the extension of the filename.

export Field object as a file. Format depends on the extention of the filename. Currently supported are:
.npz:

uses numpy.savez.

.csv: uses numpy.savetxt.

.vtk: vtk export to paraview

extent
returns the extents in a linearized form, as required by “matplotlib.pyplot.imshow”.

fft(axes=None, exponential_signs=’spatial’, **kwargs)
Performs Fourier transform on any number of axes.

60 Chapter 5. Postpic API Documentation

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

The argument axis is either an integer indicating the axis to be transformed or a tuple giving the axes that
should be transformed. Automatically determines forward/inverse transform. Transform is only applied if
all mentioned axes are in the same transform state. If an axis is transformed twice, the origin of the axis is
restored.

Parameters

• exponential_signs – configures the sign convention of the exponential.

– exponential_signs == ‘spatial’: fft using exp(-ikx), ifft using exp(ikx)

– exponential_signs == ‘temporal’: fft using exp(iwt), ifft using exp(-iwt)

• **kwargs – keyword-arguments are passed to the underlying fft implementation.

fft_autopad(axes=None, fft_padsize=<postpic.helper.FFTW_Pad object>)
Automatically pad the array to a size such that computing its FFT using FFTW will be fast.

Parameters fft_padsize (callable) – The default for keyword argument fft_padsize is a
callable, that is used to calculate the padded size for a given size.

By default, this uses fft_padsize=helper.fftw_padsize which finds the next larger “good” grid
size according to what the FFTW documentation says.

However, the FFTW documentation also says: “(. . .) Transforms whose sizes are powers of
2 are especially fast.”

If you don’t worry about the extra padding, you can pass
fft_padsize=helper.fft_padsize_power2 and this method will pad to the next power of
2.

grid

grid_nodes

half_resolution(axis)
Halfs the resolution along the given axis by removing every second grid_node and averaging every second
data point into one.

If there is an odd number of grid points, the last point will be ignored (that means, the extent will change
by the size of the last grid cell).

Returns the modified Field.

Return type Field

imag

integrate(axes=None, method=<function simps>)
Calculates the definite integral along the given axes.

Parameters method (callable) – Choose the method to use. Available options:

• ’constant’

• any function with the same signature as scipy.integrate.simps (default).

islinear()

label

classmethod loadfrom(filename)
construct a new field object from file. currently, the following file formats are supported: *.npz

5.1. postpic 61

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

map_axis_grid(axis, transform, preserve_integral=True, jacobian_func=None)
Transform the Field to new coordinates along one axis.

This function transforms the coordinates of one axis according to the function transform and applies the
jacobian to the data.

Please note that no interpolation is applied to the data, instead a non-linear axis grid is produced. If you
want to interpolate the data to a new (linear) grid, use the method map_coordinates() instead.

In contrast to map_coordinates(), the function transform is not used to pull the new data points from
the old grid, but is directly applied to the axis. This reverses the direction of the transform. Therfore, in
order to preserve the integral, it is necessary to divide by the Jacobian.

Parameters

• axis (int) – the index or name of the axis you want to apply transform to.

• transform (callable) – the transformation function which takes the old coordinates
as an input and returns the new grid

• preserve_integral (bool) – Divide by the jacobian of transform, in order to pre-
serve the integral.

• jacobian_func (callable) – If given, this is expected to return the derivative of
transform. If not given, the derivative is numerically approximated.

map_coordinates(newaxes, transform=None, complex_mode=’polar’, preserve_integral=True, ja-
cobian_func=None, jacobian_determinant_func=None, **kwargs)

Transform the Field to new coordinates.

Parameters

• newaxes (list) – The new axes of the new coordinates.

• transform (callable) – a callable that takes the new coordinates as input and returns
the old coordinates from where to sample the Field. It is basically the inverse of the
transformation that you want to perform. If transform is not given, the identity will be
used. This is suitable for simple interpolation to a new extent/shape. Example for cartesian
-> polar:

>>> def T(r, theta):
>>> x = r * np.cos(theta)
>>> y = r * np.sin(theta)
>>> return x, y

Note that this function actually computes the cartesian coordinates from the polar coor-
dinates, but stands for transforming a field in cartesian coordinates into a field in polar
coordinates.

However, in order to preserve the definite integral of the field, it is necessary to multiply
with the Jacobian determinant of T.

�̃�(𝑟, 𝜃) = 𝑈(𝑇 (𝑟, 𝜃)) · det 𝜕(𝑥, 𝑦)
𝜕(𝑟, 𝜃)

such that ∫︁
𝑉

d𝑥d𝑦 𝑈(𝑥, 𝑦) =

∫︁
𝑇−1(𝑉)

d𝑟 d𝜃 �̃�(𝑟, 𝜃) .

• complex_mode – The complex_mode specifies how to proceed with complex data.

– complex_mode = ‘cartesian’ - interpolate real/imag part (fastest)

62 Chapter 5. Postpic API Documentation

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

– complex_mode = ‘polar’ - interpolate abs/phase If skimage.restoration is available, the
phase will be unwrapped first (default)

– complex_mode = ‘polar-no-unwrap’ - interpolate abs/phase Skip unwrapping the phase,
even if skimage.restoration is available

• preserve_integral (bool) – If True (the default), the data will be multiplied with
the Jacobian determinant of the coordinate transformation such that the integral over the
data will be preserved.

In general, you will want to do this, because the physical unit of the new Field will cor-
respond to the new axis of the Fields. Please note that Postpic, currently, does not auto-
matically change the unit members of the Axis and Field objects, this you will have to do
manually.

There are, however, exceptions to this rule. Most prominently, if you are converting to
polar coordinates, it depends on what you are going to do with the transformed Field. If
you intend to do a Cartesian r-theta plot or are interested in a lineout for a single value of
theta, you do want to apply the Jacobian determinant. If you had a density in e.g. J/m^2
than, in polar coordinates, you want to have a density in J/m/rad. If you intend, on the
other hand, to do a polar plot, you do not want to apply the Jacobian. In a polar plot,
the data points are plotted with variable density which visually takes care of the Jacobian
automatically. A polar plot of the polar data should look like a Cartesian plot of the original
data with just a peculiar coordinate grid drawn over it.

• jacobian_determinant_func (callable) – A callable that returns the jacobian
determinant of the transform. If given, this takes precedence over the following option.

• jacobian_func (callable) – a callable that returns the jacobian of the transform.
If this is not given, the jacobian is numerically approximated.

• **kwargs – Additional keyword arguments are passed to
scipy.ndimage.map_coordinates, see the documentation of that function.

matrix

max(axis=None, out=None)
Return the maximum along a given axis.

Refer to numpy.amax for full documentation.

See also:

numpy.amax() equivalent function

mean(axis=None, dtype=None, out=None, keepdims=False)
Returns the average of the array elements along given axis.

Refer to numpy.mean for full documentation.

See also:

numpy.mean() equivalent function

meshgrid(sparse=True)

min(axis=None, out=None, keepdims=False)
Return the minimum along a given axis.

Refer to numpy.amin for full documentation.

See also:

5.1. postpic 63

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

numpy.amin() equivalent function

pad(pad_width, mode=’constant’, **kwargs)
Pads the data using np.pad and takes care of the axes. See documentation of numpy.pad.

In contrast to np.pad, pad_width may be given as integers, which will be interpreted as pixels, or as floats,
which will be interpreted as distance along the appropriate axis.

All other parameters are passed to np.pad unchanged.

prod(axis=None, dtype=None, out=None, keepdims=False)
Return the product of the array elements over the given axis

Refer to numpy.prod for full documentation.

See also:

numpy.prod() equivalent function

ptp(axis=None, out=None)
Peak to peak (maximum - minimum) value along a given axis.

Refer to numpy.ptp for full documentation.

See also:

numpy.ptp() equivalent function

real

replace_data(other)

saveto(filename)
Save a Field object as a file. Use loadfrom() to load Field objects.

setaxisobj(axis, axisobj)
replaces the current axisobject for axis axis by the new axisobj axisobj.

shape

shift_grid_by(dx, interpolation=’fourier’)
Translate the Grid by dx. This is useful to remove the grid stagger of field components.

If all axis will be shifted, dx may be a list. Otherwise dx should be a mapping from axis to translation
distance.

The keyword-argument interpolation indicates the method to be used and may be one of [‘linear’,
‘fourier’]. In case of interpolation = ‘fourier’ all axes must have same transform_state.

spacing
returns the grid spacings for all axis.

squeeze()
removes axes that have length 1, reducing self.dimensions.

Note, that axis with length 0 will not be removed! numpy.squeeze also does not remove length=0 directions.

Same as numpy.squeeze.

std(axis=None, dtype=None, out=None, ddof=0, keepdims=False)
Returns the standard deviation of the array elements along given axis.

Refer to numpy.std for full documentation.

64 Chapter 5. Postpic API Documentation

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

See also:

numpy.std() equivalent function

sum(axis=None, dtype=None, out=None, keepdims=False)
Return the sum of the array elements over the given axis.

Refer to numpy.sum for full documentation.

See also:

numpy.sum() equivalent function

swapaxes(axis1, axis2)
Swaps the axes axis1 and axis2, equivalent to numpy.swapaxes.

topolar(extent=None, shape=None, angleoffset=0, **kwargs)
Transform the Field to polar coordinates.

This is a convenience wrapper for map_coordinates() which will let you easily define the desired
grid in polar coordinates.

Parameters

• extent – should be of the form extent=(phimin, phimax, rmin, rmax) or extent=(phimin,
phimax)

• shape – should be of the form shape=(N_phi, N_r),

• angleoffset – can be any real number and will rotate the zero-point of the angular
axis.

• complex_mode – The complex_mode specifies how to proceed with complex data.

– complex_mode = ‘cartesian’ - interpolate real/imag part (fastest)

– complex_mode = ‘polar’ - interpolate abs/phase If skimage.restoration is available, the
phase will be unwrapped first (default)

– complex_mode = ‘polar-no-unwrap’ - interpolate abs/phase Skip unwrapping the phase,
even if skimage.restoration is available

• preserve_integral (bool) – If True (the default), the data will be multiplied with
the Jacobian determinant of the coordinate transformation such that the integral over the
data will be preserved.

In general, you will want to do this, because the physical unit of the new Field will cor-
respond to the new axis of the Fields. Please note that Postpic, currently, does not auto-
matically change the unit members of the Axis and Field objects, this you will have to do
manually.

There are, however, exceptions to this rule. Most prominently, if you are converting to
polar coordinates, it depends on what you are going to do with the transformed Field. If
you intend to do a Cartesian r-theta plot or are interested in a lineout for a single value of
theta, you do want to apply the Jacobian determinant. If you had a density in e.g. J/m^2
than, in polar coordinates, you want to have a density in J/m/rad. If you intend, on the
other hand, to do a polar plot, you do not want to apply the Jacobian. In a polar plot,
the data points are plotted with variable density which visually takes care of the Jacobian
automatically. A polar plot of the polar data should look like a Cartesian plot of the original
data with just a peculiar coordinate grid drawn over it.

5.1. postpic 65

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

• jacobian_determinant_func (callable) – A callable that returns the jacobian
determinant of the transform. If given, this takes precedence over the following option.

• jacobian_func (callable) – a callable that returns the jacobian of the transform.
If this is not given, the jacobian is numerically approximated.

• **kwargs – Additional keyword arguments are passed to
scipy.ndimage.map_coordinates, see the documentation of that function.

transpose(*axes)
transpose method equivalent to numpy.ndarray.transpose. If axes is empty, the order of the axes will be
reversed. Otherwise axes[i] == j means that the i’th axis of the returned Field will be the j’th axis of the
input Field.

var(axis=None, dtype=None, out=None, ddof=0, keepdims=False)
Returns the variance of the array elements, along given axis.

Refer to numpy.var for full documentation.

See also:

numpy.var() equivalent function

class postpic.datahandling.Axis(name=”, unit=”, **kwargs)
Bases: object

Axis handling for a single Axis.

Create an Axis object from scratch.

The least required arguments are any of:

• grid

• grid_node

• extent _and_ n

The remaining fields will be deduced from the givens.

More arguments may be supplied, as long as they are compatible.

extent

grid

grid_node

half_resolution()
removes every second grid_node.

islinear(force=False)
Checks if the axis has a linear grid.

label

physical_length

spacing

value_to_index(value)

66 Chapter 5. Postpic API Documentation

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

5.1.1.4 postpic.experimental module

Some experimental algorithms for your reference. Please note that these algorithms are not meant to be used as is and
may need adjustment in order to be applicable to a wider range of cases.

postpic.experimental.kspace_propagate_adaptive(field_in, axis=0, t_final=None,
**kwargs)

An adaptive method to use Fourier propagation (provided by the function helper.kspace_propagate) to get far
field data. The field is padded, propagated and automatically sliced in repeating steps.

Note that this method is highly experimental and should not be trusted as is: It is merely meant as a recipe so
you don’t have to write your own function from scratch!

field_in: input field in either spatial or frequency domain axis: The direction in which to propagate. Currently
only propagation parallel to the positive x, y or z direction is implemented. yield_zeroth_step: boolean that
determines if the initial step is also output.

t_final: The time at which to stop the adaptive propagation.

5.1.1.5 postpic.helper module

Some global constants that are used in the code.

class postpic.helper.PhysicalConstants
Bases: object

gives you some constants.

c = 299792458.0

epsilon0 = 8.854187817620389e-12

mass_u = 1.67266490646e-27

me = 9.109383e-31

mu0 = 1.2566370614359173e-06

static ncrit(laslambda)
Critical plasma density in particles per m^3 for a given wavelength laslambda in m.

static ncrit_um(lambda_um)
Critical plasma density in particles per m^3 for a given wavelength lambda_um in microns.

qe = 1.602176565e-19

postpic.helper.unstagger_fields(*fields, **kwargs)
Unstagger a collection of fields.

This functions shifts the origins of the grids of the given fields such that they coincide. Since the choice of
the common origin is somewhat arbitrary, it might be overriden by a keyword-argument origin, as may be the
interpolation method. See Field.shift_grid_by for available methods.

postpic.helper.kspace_epoch_like(component, fields, dt, extent=None, omega_func=<function
omega_free>, align_to=’B’)

Reconstruct the physical kspace of one polarization component See documentation of kspace

This function will use special care to make sure, that the implicit linear interpolation introduced by Epochs
half-steps will not impede the accuracy of the reconstructed k-space. The frequency response of the linear
interpolation is modelled and removed from the interpolated fields.

dt: time-step of the simulation, this is used to calculate the frequency response due to the linear interpolated
half-steps

5.1. postpic 67

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

For the current version of EPOCH, v4.9, use the following: align_to == ‘B’ for intermediate dumps, align_to
== “E” for final dumps

postpic.helper.kspace(component, fields, extent=None, interpolation=None, omega_func=<function
omega_free>)

Reconstruct the physical kspace of one polarization component This function basically computes one component
of

E = 0.5*(E - omega/k^2 * Cross[k, E])

or B = 0.5*(B + 1/omega * Cross[k, B]).

component must be one of [“Ex”, “Ey”, “Ez”, “Bx”, “By”, “Bz”].

The necessary fields must be given in the dict fields with keys chosen from [“Ex”, “Ey”, “Ez”, “Bx”, “By”,
“Bz”]. Which are needed depends on the chosen component and the dimensionality of the fields. In 3D the
following fields are necessary:

Ex, By, Bz -> Ex Ey, Bx, Bz -> Ey Ez, Bx, By -> Ez

Bx, Ey, Ez -> Bx By, Ex, Ez -> By Bz, Ex, Ey -> Bz

In 2D, components which have “k_z” in front of them (see cross-product in equations above) are not needed.
In 1D, components which have “k_y” or “k_z” in front of them (see cross-product in equations above) are not
needed.

The keyword-argument extent may be a list of values [xmin, xmax, ymin, ymax, . . .] which denote a region of
the Fields on which to execute the kspace reconstruction.

The keyword-argument interpolation indicates whether interpolation should be used to remove the grid stagger.
If interpolation is None, this function works only for non-staggered grids. Other choices for interpolation are
“linear” and “fourier”.

The keyword-argument omega_func may be used to pass a function that will calculate the dispersion relation of
the simulation may be given. The function will receive one argument that contains the k mesh.

postpic.helper.kspace_propagate(kspace, dt, nsteps=1, **kwargs)
Evolve time on a field. This function checks the transform_state of the field and transforms first from spatial
domain to frequency domain if necessary. In this case the inverse transform will also be applied to the result
before returning it. This works, however, only correctly with fields that are the inverse transforms of a k-space
reconstruction, i.e. with complex fields.

dt: time in seconds

This function will return an infinite generator that will do arbitrary many time steps.

If yield_zeroth_step is True, then the kspace will also be yielded after removing the antipropagating waves, but
before the first actual step is done.

If a vector moving_window_vect is passed to this function, which is ideally identical to the mean propagation
direction of the field in forward time direction, an additional linear phase is applied in order to keep the pulse
inside of the box. This effectively enables propagation in a moving window. If dt is negative, the window will
actually move the opposite direction of moving_window_vect. Additionally, all modes which propagate in the
opposite direction of the moving window, i.e. all modes for which dot(moving_window_vect, k)<0, will be
deleted.

The motion of the window can be inhibited by specifying move_window=False. If move_window is None, the
moving window is automatically enabled if moving_window_vect is given.

The deletion of the antipropagating modes can be inhibited by specifying remove_antipropagating_waves=False.
If remove_antipropagating_waves is None, the deletion of the antipropagating modes is automatically enabled
if moving_window_vect is given.

68 Chapter 5. Postpic API Documentation

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

nsteps: number of steps to take

If nsteps == 1, this function will just return the result. If nsteps > 1, this function will return a generator that will
generate the results. If you want a list, just put list(. . .) around the return value.

postpic.helper.time_profile_at_plane(kspace_or_complex_field, axis=’x’, value=None,
dir=1, **kwargs)

‘Measure’ the time-profile of the propagating complex_field while passing through a plane.

The arguments axis, value and dir specify the plane and main propagation direction.

axis specifies the axis perpendicular to the measurement plane.

dir=1 specifies propagation towards positive axis, dir=-1 specifies the opposite direction of propagation.

value specifies the position of the plane along axis. If value=None, a default is chosen, depending on dir.

If dir=-1, the starting point of the axis is used, which lies at the 0-component of the inverse transform.

If dir=1, the end point of the axis + one axis spacing is used, which, via periodic boundary conditions of the fft,
also lies at the 0-component of the inverse transform.

If the given value differs from these defaults, an initial propagation with moving window will be performed,
such that the desired plane lies in the default position.

For example axis=’x’ and value=0.0 specifies the ‘x=0.0’ plane while dir=1 specifies propagation towards
positive ‘x’ values. The ‘x’ axis starts at 2e-5 and ends at 6e-5 with a grid spacing of 1e-6. The default value
for the measurement plane would have been 6.1e-5 so an initial backward propagation with dt = -6.1e-5/c is
performed to move the pulse in front of the’x=0.0 plane.

Additional kwargs are passed to kspace_propagate if they are not overridden by this function.

5.1. postpic 69

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

70 Chapter 5. Postpic API Documentation

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

71

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

72 Chapter 6. Indices and tables

Python Module Index

p
postpic, 1
postpic.datahandling, 58
postpic.datareader, 1
postpic.datareader.datareader, 38
postpic.datareader.dummy, 39
postpic.datareader.epochsdf, 40
postpic.datareader.openPMDh5, 41
postpic.datareader.vsimhdf5, 42
postpic.experimental, 67
postpic.helper, 67
postpic.io, 43
postpic.io.common, 43
postpic.io.csv, 43
postpic.io.npy, 43
postpic.io.vtk, 44
postpic.particles, 46
postpic.particles.particles, 52
postpic.particles.scalarproperties, 56
postpic.plotting, 57
postpic.plotting.plotter_matplotlib, 57

73

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

74 Python Module Index

Index

A
add() (postpic.MultiSpecies method), 29
add() (postpic.particles.MultiSpecies method), 47
add() (postpic.particles.particles.MultiSpecies method),

53
addaxislabels() (postpic.plotting.plotter_matplotlib.MatplotlibPlotter

static method), 58
addField1d() (postpic.plotting.plotter_matplotlib.MatplotlibPlotter

static method), 57
addField2d() (postpic.plotting.plotter_matplotlib.MatplotlibPlotter

static method), 57
addFields1d() (postpic.plotting.plotter_matplotlib.MatplotlibPlotter

static method), 58
adjust_stagger_to() (postpic.datahandling.Field method),

59
adjust_stagger_to() (postpic.Field method), 18
all() (postpic.datahandling.Field method), 59
all() (postpic.Field method), 18
angle (postpic.datahandling.Field attribute), 59
angle (postpic.Field attribute), 18
angle_xaxis() (postpic.MultiSpecies method), 29
angle_xaxis() (postpic.particles.MultiSpecies method),

47
angle_xaxis() (postpic.particles.particles.MultiSpecies

method), 53
angle_xy() (postpic.MultiSpecies method), 29
angle_xy() (postpic.particles.MultiSpecies method), 47
angle_xy() (postpic.particles.particles.MultiSpecies

method), 53
angle_xz() (postpic.MultiSpecies method), 29
angle_xz() (postpic.particles.MultiSpecies method), 47
angle_xz() (postpic.particles.particles.MultiSpecies

method), 53
angle_yx() (postpic.MultiSpecies method), 29
angle_yx() (postpic.particles.MultiSpecies method), 47
angle_yx() (postpic.particles.particles.MultiSpecies

method), 53
angle_yz() (postpic.MultiSpecies method), 29
angle_yz() (postpic.particles.MultiSpecies method), 48

angle_yz() (postpic.particles.particles.MultiSpecies
method), 53

angle_zx() (postpic.MultiSpecies method), 29
angle_zx() (postpic.particles.MultiSpecies method), 48
angle_zx() (postpic.particles.particles.MultiSpecies

method), 53
angle_zy() (postpic.MultiSpecies method), 29
angle_zy() (postpic.particles.MultiSpecies method), 48
angle_zy() (postpic.particles.particles.MultiSpecies

method), 53
annotate() (postpic.plotting.plotter_matplotlib.MatplotlibPlotter

static method), 58
annotate_fromfield() (post-

pic.plotting.plotter_matplotlib.MatplotlibPlotter
static method), 58

annotate_fromreader() (post-
pic.plotting.plotter_matplotlib.MatplotlibPlotter
static method), 58

any() (postpic.datahandling.Field method), 59
any() (postpic.Field method), 18
ArrayData (class in postpic.io.vtk), 44
atleast_nd() (postpic.datahandling.Field method), 59
atleast_nd() (postpic.Field method), 18
autocutout() (postpic.datahandling.Field method), 59
autocutout() (postpic.Field method), 18
autoreduce() (postpic.datahandling.Field method), 60
autoreduce() (postpic.Field method), 18
axesformatterx (postpic.plotting.plotter_matplotlib.MatplotlibPlotter

attribute), 58
axesformattery (postpic.plotting.plotter_matplotlib.MatplotlibPlotter

attribute), 58
Axis (class in postpic), 24
Axis (class in postpic.datahandling), 66

B
beta() (postpic.MultiSpecies method), 29
beta() (postpic.particles.MultiSpecies method), 48
beta() (postpic.particles.particles.MultiSpecies method),

53
betax() (postpic.MultiSpecies method), 29

75

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

betax() (postpic.particles.MultiSpecies method), 48
betax() (postpic.particles.particles.MultiSpecies method),

54
betay() (postpic.MultiSpecies method), 29
betay() (postpic.particles.MultiSpecies method), 48
betay() (postpic.particles.particles.MultiSpecies method),

54
betaz() (postpic.MultiSpecies method), 29
betaz() (postpic.particles.MultiSpecies method), 48
betaz() (postpic.particles.particles.MultiSpecies method),

54

C
c (postpic.helper.PhysicalConstants attribute), 67
c (postpic.PhysicalConstants attribute), 25
CellData (class in postpic.io.vtk), 44
charge() (postpic.MultiSpecies method), 29
charge() (postpic.particles.MultiSpecies method), 48
charge() (postpic.particles.particles.MultiSpecies

method), 54
charge_e() (postpic.MultiSpecies method), 29
charge_e() (postpic.particles.MultiSpecies method), 48
charge_e() (postpic.particles.particles.MultiSpecies

method), 54
chooseCode() (in module postpic), 33
chooseCode() (in module postpic.datareader), 2, 35
clip() (postpic.datahandling.Field method), 60
clip() (postpic.Field method), 18
collect() (postpic.ParticleHistory method), 32
collect() (postpic.particles.ParticleHistory method), 50
collect() (postpic.particles.particles.ParticleHistory

method), 56
compress() (postpic.MultiSpecies method), 29
compress() (postpic.particles.MultiSpecies method), 48
compress() (postpic.particles.particles.MultiSpecies

method), 54
compressfn() (postpic.MultiSpecies method), 30
compressfn() (postpic.particles.MultiSpecies method), 48
compressfn() (postpic.particles.particles.MultiSpecies

method), 54
conj() (postpic.datahandling.Field method), 60
conj() (postpic.Field method), 18
createField() (postpic.MultiSpecies method), 30
createField() (postpic.particles.MultiSpecies method), 48
createField() (postpic.particles.particles.MultiSpecies

method), 54
cutout() (postpic.datahandling.Field method), 60
cutout() (postpic.Field method), 18

D
Data (class in postpic.io.vtk), 44
data() (postpic.datareader.datareader.Dumpreader_ifc

method), 38

data() (postpic.datareader.dummy.Dummyreader
method), 40

data() (postpic.datareader.Dumpreader_ifc method), 3, 36
data() (postpic.datareader.epochsdf.Sdfreader method),

41
data() (postpic.datareader.openPMDh5.OpenPMDreader

method), 41
dataB() (postpic.datareader.datareader.Dumpreader_ifc

method), 38
dataB() (postpic.datareader.Dumpreader_ifc method), 36
dataB() (postpic.datareader.vsimhdf5.Hdf5reader

method), 42
dataE() (postpic.datareader.datareader.Dumpreader_ifc

method), 38
dataE() (postpic.datareader.Dumpreader_ifc method), 36
dataE() (postpic.datareader.vsimhdf5.Hdf5reader

method), 42
DataSet (class in postpic.io.vtk), 44
dimensions (postpic.datahandling.Field attribute), 60
dimensions (postpic.Field attribute), 19
Dummyreader (class in postpic.datareader.dummy), 39
Dummysim (class in postpic.datareader.dummy), 40
dumpreader (postpic.MultiSpecies attribute), 30
dumpreader (postpic.particles.MultiSpecies attribute), 49
dumpreader (postpic.particles.particles.MultiSpecies at-

tribute), 54
Dumpreader_ifc (class in postpic.datareader), 3, 36
Dumpreader_ifc (class in postpic.datareader.datareader),

38

E
efieldcdict (postpic.plotting.plotter_matplotlib.MatplotlibPlotter

attribute), 58
Ekin() (postpic.MultiSpecies method), 27
Ekin() (postpic.particles.MultiSpecies method), 46
Ekin() (postpic.particles.particles.MultiSpecies method),

52
Ekin_keV() (postpic.MultiSpecies method), 28
Ekin_keV() (postpic.particles.MultiSpecies method), 46
Ekin_keV() (postpic.particles.particles.MultiSpecies

method), 52
Ekin_keV_amu() (postpic.MultiSpecies method), 28
Ekin_keV_amu() (postpic.particles.MultiSpecies

method), 46
Ekin_keV_amu() (post-

pic.particles.particles.MultiSpecies method),
52

Ekin_keV_qm() (postpic.MultiSpecies method), 28
Ekin_keV_qm() (postpic.particles.MultiSpecies method),

46
Ekin_keV_qm() (postpic.particles.particles.MultiSpecies

method), 52
Ekin_MeV() (postpic.MultiSpecies method), 28
Ekin_MeV() (postpic.particles.MultiSpecies method), 46

76 Index

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

Ekin_MeV() (postpic.particles.particles.MultiSpecies
method), 52

Ekin_MeV_amu() (postpic.MultiSpecies method), 28
Ekin_MeV_amu() (postpic.particles.MultiSpecies

method), 46
Ekin_MeV_amu() (post-

pic.particles.particles.MultiSpecies method),
52

Ekin_MeV_qm() (postpic.MultiSpecies method), 28
Ekin_MeV_qm() (postpic.particles.MultiSpecies

method), 46
Ekin_MeV_qm() (post-

pic.particles.particles.MultiSpecies method),
52

ensure_frequency_domain() (postpic.datahandling.Field
method), 60

ensure_frequency_domain() (postpic.Field method), 19
ensure_spatial_domain() (postpic.datahandling.Field

method), 60
ensure_spatial_domain() (postpic.Field method), 19
ensure_transform_state() (postpic.datahandling.Field

method), 60
ensure_transform_state() (postpic.Field method), 19
epsilon0 (postpic.helper.PhysicalConstants attribute), 67
epsilon0 (postpic.PhysicalConstants attribute), 25
Eruhe() (postpic.MultiSpecies method), 28
Eruhe() (postpic.particles.MultiSpecies method), 46
Eruhe() (postpic.particles.particles.MultiSpecies

method), 52
evaluate() (postpic.particles.scalarproperties.ScalarProperty

method), 56
evaluate() (postpic.particles.ScalarProperty method), 46
evaluate() (postpic.ScalarProperty method), 27
export() (postpic.datahandling.Field method), 60
export() (postpic.Field method), 19
export_field() (in module postpic), 34
export_field() (in module postpic.io), 43
export_scalar_vtk() (in module postpic), 34
export_scalar_vtk() (in module postpic.io), 43
export_scalar_vtk() (in module postpic.io.vtk), 45
export_scalars_vtk() (in module postpic), 34
export_scalars_vtk() (in module postpic.io), 43
export_scalars_vtk() (in module postpic.io.vtk), 45
export_vector_vtk() (in module postpic), 34
export_vector_vtk() (in module postpic.io), 43
export_vector_vtk() (in module postpic.io.vtk), 45
expr (postpic.particles.scalarproperties.ScalarProperty at-

tribute), 57
expr (postpic.particles.ScalarProperty attribute), 46
expr (postpic.ScalarProperty attribute), 27
extent (postpic.Axis attribute), 25
extent (postpic.datahandling.Axis attribute), 66
extent (postpic.datahandling.Field attribute), 60
extent (postpic.Field attribute), 19

F
fft() (postpic.datahandling.Field method), 60
fft() (postpic.Field method), 19
fft_autopad() (postpic.datahandling.Field method), 61
fft_autopad() (postpic.Field method), 19
Field (class in postpic), 17
Field (class in postpic.datahandling), 59
FileSeries (class in postpic.datareader.openPMDh5), 42
filter() (postpic.MultiSpecies method), 30
filter() (postpic.particles.MultiSpecies method), 49
filter() (postpic.particles.particles.MultiSpecies method),

55
from_field() (postpic.io.vtk.RectilinearGrid class

method), 45
from_field() (postpic.io.vtk.StructuredPoints class

method), 45
from_list() (postpic.plotting.plotter_matplotlib.MatplotlibPlotter.LinearSegmentedColormap

static method), 57

G
gamma() (postpic.MultiSpecies method), 30
gamma() (postpic.particles.MultiSpecies method), 49
gamma() (postpic.particles.particles.MultiSpecies

method), 55
gamma_m1() (postpic.MultiSpecies method), 30
gamma_m1() (postpic.particles.MultiSpecies method), 49
gamma_m1() (postpic.particles.particles.MultiSpecies

method), 55
getcompresslog() (postpic.MultiSpecies method), 30
getcompresslog() (postpic.particles.MultiSpecies

method), 49
getcompresslog() (post-

pic.particles.particles.MultiSpecies method),
55

getderived() (postpic.datareader.epochsdf.Sdfreader
method), 41

getderived() (postpic.datareader.openPMDh5.OpenPMDreader
method), 42

getderived() (postpic.datareader.vsimhdf5.Hdf5reader
method), 42

getDumpreader() (post-
pic.datareader.vsimhdf5.VSimReader method),
43

getSpecies() (postpic.datareader.datareader.Dumpreader_ifc
method), 38

getSpecies() (postpic.datareader.dummy.Dummyreader
method), 40

getSpecies() (postpic.datareader.Dumpreader_ifc
method), 3, 36

getSpecies() (postpic.datareader.epochsdf.Sdfreader
method), 41

getSpecies() (postpic.datareader.openPMDh5.OpenPMDreader
method), 42

Index 77

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

getSpecies() (postpic.datareader.vsimhdf5.Hdf5reader
method), 42

grid (postpic.Axis attribute), 25
grid (postpic.datahandling.Axis attribute), 66
grid (postpic.datahandling.Field attribute), 61
grid (postpic.Field attribute), 20
grid() (postpic.datareader.dummy.Dummyreader

method), 40
grid() (postpic.datareader.vsimhdf5.Hdf5reader method),

42
grid_node (postpic.Axis attribute), 25
grid_node (postpic.datahandling.Axis attribute), 66
grid_nodes (postpic.datahandling.Field attribute), 61
grid_nodes (postpic.Field attribute), 20
gridkeyB() (postpic.datareader.datareader.Dumpreader_ifc

method), 38
gridkeyB() (postpic.datareader.Dumpreader_ifc method),

36
gridkeyE() (postpic.datareader.datareader.Dumpreader_ifc

method), 38
gridkeyE() (postpic.datareader.Dumpreader_ifc method),

37
gridnode() (postpic.datareader.datareader.Dumpreader_ifc

method), 38
gridnode() (postpic.datareader.dummy.Dummyreader

method), 40
gridnode() (postpic.datareader.Dumpreader_ifc method),

4, 37
gridoffset() (postpic.datareader.datareader.Dumpreader_ifc

method), 39
gridoffset() (postpic.datareader.dummy.Dummyreader

method), 40
gridoffset() (postpic.datareader.Dumpreader_ifc method),

4, 37
gridoffset() (postpic.datareader.epochsdf.Sdfreader

method), 41
gridoffset() (postpic.datareader.openPMDh5.OpenPMDreader

method), 42
gridpoints() (postpic.datareader.datareader.Dumpreader_ifc

method), 39
gridpoints() (postpic.datareader.Dumpreader_ifc

method), 4, 37
gridpoints() (postpic.datareader.epochsdf.Sdfreader

method), 41
gridpoints() (postpic.datareader.openPMDh5.OpenPMDreader

method), 42
gridspacing() (postpic.datareader.datareader.Dumpreader_ifc

method), 39
gridspacing() (postpic.datareader.dummy.Dummyreader

method), 40
gridspacing() (postpic.datareader.Dumpreader_ifc

method), 4, 37
gridspacing() (postpic.datareader.epochsdf.Sdfreader

method), 41

gridspacing() (postpic.datareader.openPMDh5.OpenPMDreader
method), 42

H
half_resolution() (postpic.Axis method), 25
half_resolution() (postpic.datahandling.Axis method), 66
half_resolution() (postpic.datahandling.Field method), 61
half_resolution() (postpic.Field method), 20
Hdf5reader (class in postpic.datareader.vsimhdf5), 42
histogramdd() (in module postpic), 32
histogramdd() (in module postpic.particles), 50

I
ID() (postpic.MultiSpecies method), 28
ID() (postpic.particles.MultiSpecies method), 46
ID() (postpic.particles.particles.MultiSpecies method), 52
identifyspecies() (postpic.particles.SpeciesIdentifier class

method), 51
identifyspecies() (postpic.SpeciesIdentifier class method),

33
imag (postpic.datahandling.Field attribute), 61
imag (postpic.Field attribute), 20
initial_npart (postpic.MultiSpecies attribute), 30
initial_npart (postpic.particles.MultiSpecies attribute), 49
initial_npart (postpic.particles.particles.MultiSpecies at-

tribute), 55
input_names (postpic.particles.scalarproperties.ScalarProperty

attribute), 57
input_names (postpic.particles.ScalarProperty attribute),

46
input_names (postpic.ScalarProperty attribute), 27
integrate() (postpic.datahandling.Field method), 61
integrate() (postpic.Field method), 20
isejected() (postpic.particles.SpeciesIdentifier static

method), 51
isejected() (postpic.SpeciesIdentifier static method), 33
ision() (postpic.particles.SpeciesIdentifier class method),

51
ision() (postpic.SpeciesIdentifier class method), 33
islinear() (postpic.Axis method), 25
islinear() (postpic.datahandling.Axis method), 66
islinear() (postpic.datahandling.Field method), 61
islinear() (postpic.Field method), 20

K
keys() (postpic.datareader.datareader.Dumpreader_ifc

method), 39
keys() (postpic.datareader.dummy.Dummyreader

method), 40
keys() (postpic.datareader.Dumpreader_ifc method), 4, 37
keys() (postpic.datareader.epochsdf.Sdfreader method),

41
keys() (postpic.datareader.openPMDh5.OpenPMDreader

method), 42

78 Index

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

keys() (postpic.datareader.vsimhdf5.Hdf5reader method),
42

kspace() (in module postpic), 26
kspace() (in module postpic.helper), 68
kspace_epoch_like() (in module postpic), 25
kspace_epoch_like() (in module postpic.helper), 67
kspace_propagate() (in module postpic), 26
kspace_propagate() (in module postpic.helper), 68
kspace_propagate_adaptive() (in module post-

pic.experimental), 67

L
label (postpic.Axis attribute), 25
label (postpic.datahandling.Axis attribute), 66
label (postpic.datahandling.Field attribute), 61
label (postpic.Field attribute), 20
lastsavename() (postpic.plotting.plotter_matplotlib.MatplotlibPlotter

method), 58
listSpecies() (postpic.datareader.datareader.Dumpreader_ifc

method), 39
listSpecies() (postpic.datareader.dummy.Dummyreader

method), 40
listSpecies() (postpic.datareader.Dumpreader_ifc

method), 37
listSpecies() (postpic.datareader.epochsdf.Sdfreader

method), 41
listSpecies() (postpic.datareader.openPMDh5.OpenPMDreader

method), 42
listSpecies() (postpic.datareader.vsimhdf5.Hdf5reader

method), 42
load_field() (in module postpic), 34
load_field() (in module postpic.io), 43
loadfrom() (postpic.datahandling.Field class method), 61
loadfrom() (postpic.Field class method), 20

M
map_axis_grid() (postpic.datahandling.Field method), 61
map_axis_grid() (postpic.Field method), 20
map_coordinates() (postpic.datahandling.Field method),

62
map_coordinates() (postpic.Field method), 20
mass() (postpic.MultiSpecies method), 31
mass() (postpic.particles.MultiSpecies method), 49
mass() (postpic.particles.particles.MultiSpecies method),

55
mass_u (postpic.helper.PhysicalConstants attribute), 67
mass_u (postpic.PhysicalConstants attribute), 25
mass_u() (postpic.MultiSpecies method), 31
mass_u() (postpic.particles.MultiSpecies method), 49
mass_u() (postpic.particles.particles.MultiSpecies

method), 55
matplotlib (postpic.plotting.plotter_matplotlib.MatplotlibPlotter

attribute), 58

MatplotlibPlotter (class in post-
pic.plotting.plotter_matplotlib), 57

MatplotlibPlotter.LinearSegmentedColormap (class in
postpic.plotting.plotter_matplotlib), 57

matrix (postpic.datahandling.Field attribute), 63
matrix (postpic.Field attribute), 22
max() (postpic.datahandling.Field method), 63
max() (postpic.Field method), 22
me (postpic.helper.PhysicalConstants attribute), 67
me (postpic.PhysicalConstants attribute), 25
mean() (postpic.datahandling.Field method), 63
mean() (postpic.Field method), 22
mean() (postpic.MultiSpecies method), 31
mean() (postpic.particles.MultiSpecies method), 49
mean() (postpic.particles.particles.MultiSpecies method),

55
median() (postpic.MultiSpecies method), 31
median() (postpic.particles.MultiSpecies method), 49
median() (postpic.particles.particles.MultiSpecies

method), 55
meshgrid() (postpic.datahandling.Field method), 63
meshgrid() (postpic.Field method), 22
min() (postpic.datahandling.Field method), 63
min() (postpic.Field method), 22
mu0 (postpic.helper.PhysicalConstants attribute), 67
mu0 (postpic.PhysicalConstants attribute), 25
MultiSpecies (class in postpic), 27
MultiSpecies (class in postpic.particles), 46
MultiSpecies (class in postpic.particles.particles), 52

N
name (postpic.datareader.datareader.Dumpreader_ifc at-

tribute), 39
name (postpic.datareader.datareader.Simulationreader_ifc

attribute), 39
name (postpic.datareader.Dumpreader_ifc attribute), 37
name (postpic.datareader.Simulationreader_ifc attribute),

37
name (postpic.MultiSpecies attribute), 31
name (postpic.particles.MultiSpecies attribute), 49
name (postpic.particles.particles.MultiSpecies attribute),

55
name (postpic.particles.scalarproperties.ScalarProperty

attribute), 57
name (postpic.particles.ScalarProperty attribute), 46
name (postpic.ScalarProperty attribute), 27
ncrit() (postpic.helper.PhysicalConstants static method),

67
ncrit() (postpic.PhysicalConstants static method), 25
ncrit_um() (postpic.helper.PhysicalConstants static

method), 67
ncrit_um() (postpic.PhysicalConstants static method), 25
npart (postpic.MultiSpecies attribute), 31
npart (postpic.particles.MultiSpecies attribute), 49

Index 79

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

npart (postpic.particles.particles.MultiSpecies attribute),
55

nspecies (postpic.MultiSpecies attribute), 31
nspecies (postpic.particles.MultiSpecies attribute), 49
nspecies (postpic.particles.particles.MultiSpecies at-

tribute), 55

O
OpenPMDreader (class in post-

pic.datareader.openPMDh5), 41

P
P() (postpic.MultiSpecies method), 28
P() (postpic.particles.MultiSpecies method), 46
P() (postpic.particles.particles.MultiSpecies method), 52
pad() (postpic.datahandling.Field method), 64
pad() (postpic.Field method), 22
ParticleHistory (class in postpic), 32
ParticleHistory (class in postpic.particles), 50
ParticleHistory (class in postpic.particles.particles), 56
physical_length (postpic.Axis attribute), 25
physical_length (postpic.datahandling.Axis attribute), 66
PhysicalConstants (class in postpic), 25
PhysicalConstants (class in postpic.helper), 67
plotallderived() (postpic.plotting.plotter_matplotlib.MatplotlibPlotter

method), 58
plotField() (postpic.plotting.plotter_matplotlib.MatplotlibPlotter

method), 58
plotField2d() (postpic.plotting.plotter_matplotlib.MatplotlibPlotter

method), 58
plotFields() (postpic.plotting.plotter_matplotlib.MatplotlibPlotter

method), 58
plotFields1d() (postpic.plotting.plotter_matplotlib.MatplotlibPlotter

method), 58
PointData (class in postpic.io.vtk), 44
postpic (module), 1, 17
postpic.datahandling (module), 58
postpic.datareader (module), 1, 34
postpic.datareader.datareader (module), 38
postpic.datareader.dummy (module), 39
postpic.datareader.epochsdf (module), 40
postpic.datareader.openPMDh5 (module), 41
postpic.datareader.vsimhdf5 (module), 42
postpic.experimental (module), 67
postpic.helper (module), 67
postpic.io (module), 43
postpic.io.common (module), 43
postpic.io.csv (module), 43
postpic.io.npy (module), 43
postpic.io.vtk (module), 44
postpic.particles (module), 46
postpic.particles.particles (module), 52
postpic.particles.scalarproperties (module), 56
postpic.plotting (module), 57

postpic.plotting.plotter_matplotlib (module), 57
prod() (postpic.datahandling.Field method), 64
prod() (postpic.Field method), 22
project (postpic.plotting.plotter_matplotlib.MatplotlibPlotter

attribute), 58
ptp() (postpic.datahandling.Field method), 64
ptp() (postpic.Field method), 22
Px() (postpic.MultiSpecies method), 28
Px() (postpic.particles.MultiSpecies method), 46
Px() (postpic.particles.particles.MultiSpecies method), 52
Py() (postpic.MultiSpecies method), 28
Py() (postpic.particles.MultiSpecies method), 47
Py() (postpic.particles.particles.MultiSpecies method), 52
Pz() (postpic.MultiSpecies method), 28
Pz() (postpic.particles.MultiSpecies method), 47
Pz() (postpic.particles.particles.MultiSpecies method), 52

Q
qe (postpic.helper.PhysicalConstants attribute), 67
qe (postpic.PhysicalConstants attribute), 25
quantile() (postpic.MultiSpecies method), 31
quantile() (postpic.particles.MultiSpecies method), 49
quantile() (postpic.particles.particles.MultiSpecies

method), 55

R
r_xy() (postpic.MultiSpecies method), 31
r_xy() (postpic.particles.MultiSpecies method), 49
r_xy() (postpic.particles.particles.MultiSpecies method),

55
r_xyz() (postpic.MultiSpecies method), 31
r_xyz() (postpic.particles.MultiSpecies method), 49
r_xyz() (postpic.particles.particles.MultiSpecies method),

55
r_yz() (postpic.MultiSpecies method), 31
r_yz() (postpic.particles.MultiSpecies method), 49
r_yz() (postpic.particles.particles.MultiSpecies method),

55
r_zx() (postpic.MultiSpecies method), 31
r_zx() (postpic.particles.MultiSpecies method), 50
r_zx() (postpic.particles.particles.MultiSpecies method),

55
readDump() (in module postpic), 4, 33
readDump() (in module postpic.datareader), 2, 35
readSim() (in module postpic), 4, 33
readSim() (in module postpic.datareader), 2, 35
real (postpic.datahandling.Field attribute), 64
real (postpic.Field attribute), 22
RectilinearGrid (class in postpic.io.vtk), 45
replace_data() (postpic.datahandling.Field method), 64
replace_data() (postpic.Field method), 23

S
savefig() (postpic.plotting.plotter_matplotlib.MatplotlibPlotter

80 Index

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

method), 58
savename() (postpic.plotting.plotter_matplotlib.MatplotlibPlotter

method), 58
saveto() (postpic.datahandling.Field method), 64
saveto() (postpic.Field method), 23
ScalarProperty (class in postpic), 27
ScalarProperty (class in postpic.particles), 46
ScalarProperty (class in post-

pic.particles.scalarproperties), 56
Scalars (class in postpic.io.vtk), 45
Sdfreader (class in postpic.datareader.epochsdf), 40
set_gamma() (postpic.plotting.plotter_matplotlib.MatplotlibPlotter.LinearSegmentedColormap

method), 57
setaxisobj() (postpic.datahandling.Field method), 64
setaxisobj() (postpic.Field method), 23
setdumpreadercls() (in module postpic.datareader), 3, 35
setsimreadercls() (in module postpic.datareader), 3, 35
settext_ax() (postpic.plotting.plotter_matplotlib.MatplotlibPlotter

static method), 58
settext_fig() (postpic.plotting.plotter_matplotlib.MatplotlibPlotter

static method), 58
shape (postpic.datahandling.Field attribute), 64
shape (postpic.Field attribute), 23
shift_grid_by() (postpic.datahandling.Field method), 64
shift_grid_by() (postpic.Field method), 23
simdimensions() (postpic.datareader.datareader.Dumpreader_ifc

method), 39
simdimensions() (postpic.datareader.dummy.Dummyreader

method), 40
simdimensions() (postpic.datareader.Dumpreader_ifc

method), 4, 37
simdimensions() (postpic.datareader.epochsdf.Sdfreader

method), 41
simdimensions() (postpic.datareader.openPMDh5.OpenPMDreader

method), 42
simdimensions() (postpic.datareader.vsimhdf5.Hdf5reader

method), 42
simextent() (postpic.datareader.datareader.Dumpreader_ifc

method), 39
simextent() (postpic.datareader.dummy.Dummyreader

method), 40
simextent() (postpic.datareader.Dumpreader_ifc method),

4, 37
simextent() (postpic.datareader.epochsdf.Sdfreader

method), 41
simextent() (postpic.MultiSpecies method), 31
simextent() (postpic.particles.MultiSpecies method), 50
simextent() (postpic.particles.particles.MultiSpecies

method), 55
simgridpoints() (postpic.datareader.datareader.Dumpreader_ifc

method), 39
simgridpoints() (postpic.datareader.dummy.Dummyreader

method), 40
simgridpoints() (postpic.datareader.Dumpreader_ifc

method), 37
simgridpoints() (postpic.datareader.epochsdf.Sdfreader

method), 41
simgridpoints() (postpic.MultiSpecies method), 31
simgridpoints() (postpic.particles.MultiSpecies method),

50
simgridpoints() (postpic.particles.particles.MultiSpecies

method), 55
simgridspacing() (post-

pic.datareader.datareader.Dumpreader_ifc
method), 39

simgridspacing() (postpic.datareader.Dumpreader_ifc
method), 37

Simulationreader_ifc (class in postpic.datareader), 4, 37
Simulationreader_ifc (class in post-

pic.datareader.datareader), 39
skip() (postpic.ParticleHistory method), 32
skip() (postpic.particles.ParticleHistory method), 50
skip() (postpic.particles.particles.ParticleHistory

method), 56
spacing (postpic.Axis attribute), 25
spacing (postpic.datahandling.Axis attribute), 66
spacing (postpic.datahandling.Field attribute), 64
spacing (postpic.Field attribute), 23
species (postpic.MultiSpecies attribute), 31
species (postpic.particles.MultiSpecies attribute), 50
species (postpic.particles.particles.MultiSpecies at-

tribute), 56
SpeciesIdentifier (class in postpic), 33
SpeciesIdentifier (class in postpic.particles), 51
speciess (postpic.MultiSpecies attribute), 31
speciess (postpic.particles.MultiSpecies attribute), 50
speciess (postpic.particles.particles.MultiSpecies at-

tribute), 56
squeeze() (postpic.datahandling.Field method), 64
squeeze() (postpic.Field method), 23
std() (postpic.datahandling.Field method), 64
std() (postpic.Field method), 23
StructuredPoints (class in postpic.io.vtk), 45
sum() (postpic.datahandling.Field method), 65
sum() (postpic.Field method), 23
swapaxes() (postpic.datahandling.Field method), 65
swapaxes() (postpic.Field method), 23
symbol (postpic.particles.scalarproperties.ScalarProperty

attribute), 57
symbol (postpic.particles.ScalarProperty attribute), 46
symbol (postpic.ScalarProperty attribute), 27
symmap (postpic.plotting.plotter_matplotlib.MatplotlibPlotter

attribute), 58
symmetricclim() (postpic.plotting.plotter_matplotlib.MatplotlibPlotter

static method), 58
symmetricclimaximage() (post-

pic.plotting.plotter_matplotlib.MatplotlibPlotter
static method), 58

Index 81

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

T
T (postpic.datahandling.Field attribute), 59
T (postpic.Field attribute), 18
time() (postpic.datareader.datareader.Dumpreader_ifc

method), 39
time() (postpic.datareader.dummy.Dummyreader

method), 40
time() (postpic.datareader.Dumpreader_ifc method), 37
time() (postpic.datareader.epochsdf.Sdfreader method),

41
time() (postpic.datareader.openPMDh5.OpenPMDreader

method), 42
time() (postpic.datareader.vsimhdf5.Hdf5reader method),

43
time() (postpic.MultiSpecies method), 31
time() (postpic.particles.MultiSpecies method), 50
time() (postpic.particles.particles.MultiSpecies method),

56
time_profile_at_plane() (in module postpic), 27
time_profile_at_plane() (in module postpic.helper), 69
times() (postpic.datareader.datareader.Simulationreader_ifc

method), 39
times() (postpic.datareader.Simulationreader_ifc

method), 37
timestep() (postpic.datareader.datareader.Dumpreader_ifc

method), 39
timestep() (postpic.datareader.dummy.Dummyreader

method), 40
timestep() (postpic.datareader.Dumpreader_ifc method),

37
timestep() (postpic.datareader.epochsdf.Sdfreader

method), 41
timestep() (postpic.datareader.openPMDh5.OpenPMDreader

method), 42
timestep() (postpic.datareader.vsimhdf5.Hdf5reader

method), 43
tofile() (postpic.io.vtk.ArrayData method), 44
tofile() (postpic.io.vtk.CellData method), 44
tofile() (postpic.io.vtk.Data method), 44
tofile() (postpic.io.vtk.PointData method), 45
tofile() (postpic.io.vtk.RectilinearGrid method), 45
tofile() (postpic.io.vtk.Scalars method), 45
tofile() (postpic.io.vtk.StructuredPoints method), 45
tofile() (postpic.io.vtk.Vectors method), 45
tofile() (postpic.io.vtk.VtkData method), 45
topolar() (postpic.datahandling.Field method), 65
topolar() (postpic.Field method), 23
transform_data() (postpic.io.vtk.ArrayData method), 44
transpose() (postpic.datahandling.Field method), 66
transpose() (postpic.Field method), 24

U
uncompress() (postpic.MultiSpecies method), 31

uncompress() (postpic.particles.MultiSpecies method),
50

uncompress() (postpic.particles.particles.MultiSpecies
method), 56

unit (postpic.particles.scalarproperties.ScalarProperty at-
tribute), 57

unit (postpic.particles.ScalarProperty attribute), 46
unit (postpic.ScalarProperty attribute), 27
unstagger_fields() (in module postpic), 25
unstagger_fields() (in module postpic.helper), 67
use() (in module postpic.plotting), 57

V
V() (postpic.MultiSpecies method), 28
V() (postpic.particles.MultiSpecies method), 47
V() (postpic.particles.particles.MultiSpecies method), 52
value_to_index() (postpic.Axis method), 25
value_to_index() (postpic.datahandling.Axis method), 66
var() (postpic.datahandling.Field method), 66
var() (postpic.Field method), 24
var() (postpic.MultiSpecies method), 31
var() (postpic.particles.MultiSpecies method), 50
var() (postpic.particles.particles.MultiSpecies method),

56
Vectors (class in postpic.io.vtk), 45
Visitreader (class in postpic.datareader.epochsdf), 41
VSimReader (class in postpic.datareader.vsimhdf5), 43
VtkData (class in postpic.io.vtk), 45
VtkFile (class in postpic.io.vtk), 45
Vx() (postpic.MultiSpecies method), 28
Vx() (postpic.particles.MultiSpecies method), 47
Vx() (postpic.particles.particles.MultiSpecies method),

52
Vy() (postpic.MultiSpecies method), 28
Vy() (postpic.particles.MultiSpecies method), 47
Vy() (postpic.particles.particles.MultiSpecies method),

53
Vz() (postpic.MultiSpecies method), 28
Vz() (postpic.particles.MultiSpecies method), 47
Vz() (postpic.particles.particles.MultiSpecies method),

53

W
weight() (postpic.MultiSpecies method), 31
weight() (postpic.particles.MultiSpecies method), 50
weight() (postpic.particles.particles.MultiSpecies

method), 56

X
X() (postpic.MultiSpecies method), 28
X() (postpic.particles.MultiSpecies method), 47
X() (postpic.particles.particles.MultiSpecies method), 53
X_um() (postpic.MultiSpecies method), 28
X_um() (postpic.particles.MultiSpecies method), 47

82 Index

postpic Documentation, Release v0.3.1+298.g833fe56.dirty

X_um() (postpic.particles.particles.MultiSpecies
method), 53

Y
Y() (postpic.MultiSpecies method), 28
Y() (postpic.particles.MultiSpecies method), 47
Y() (postpic.particles.particles.MultiSpecies method), 53
Y_um() (postpic.MultiSpecies method), 28
Y_um() (postpic.particles.MultiSpecies method), 47
Y_um() (postpic.particles.particles.MultiSpecies

method), 53

Z
Z() (postpic.MultiSpecies method), 29
Z() (postpic.particles.MultiSpecies method), 47
Z() (postpic.particles.particles.MultiSpecies method), 53
Z_um() (postpic.MultiSpecies method), 29
Z_um() (postpic.particles.MultiSpecies method), 47
Z_um() (postpic.particles.particles.MultiSpecies

method), 53

Index 83

	Introduction
	What is postpic?
	The Dumpreader
	The Simulationreader

	Getting started
	Changelog of postpic
	current master
	v0.3.1
	v0.3
	v0.2.3
	v0.2.2 and earlier

	Contributing to the postpic code base
	Why me?
	How to contribute?
	The Workflow
	Coding and general remaks
	What to contribute?

	Postpic API Documentation
	postpic
	postpic package
	Subpackages
	Submodules
	postpic.datahandling module
	postpic.experimental module
	postpic.helper module

	Indices and tables
	Python Module Index

